trans_funsd_label.py 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import sys
import cv2
import numpy as np
from copy import deepcopy


def trans_poly_to_bbox(poly):
    x1 = np.min([p[0] for p in poly])
    x2 = np.max([p[0] for p in poly])
    y1 = np.min([p[1] for p in poly])
    y2 = np.max([p[1] for p in poly])
    return [x1, y1, x2, y2]


def get_outer_poly(bbox_list):
    x1 = min([bbox[0] for bbox in bbox_list])
    y1 = min([bbox[1] for bbox in bbox_list])
    x2 = max([bbox[2] for bbox in bbox_list])
    y2 = max([bbox[3] for bbox in bbox_list])
    return [[x1, y1], [x2, y1], [x2, y2], [x1, y2]]


def load_funsd_label(image_dir, anno_dir):
    imgs = os.listdir(image_dir)
    annos = os.listdir(anno_dir)

    imgs = [img.replace(".png", "") for img in imgs]
    annos = [anno.replace(".json", "") for anno in annos]

    fn_info_map = dict()
    for anno_fn in annos:
        res = []
        with open(os.path.join(anno_dir, anno_fn + ".json"), "r") as fin:
            infos = json.load(fin)
            infos = infos["form"]
            old_id2new_id_map = dict()
            global_new_id = 0
            for info in infos:
                if info["text"] is None:
                    continue
                words = info["words"]
                if len(words) <= 0:
                    continue
                word_idx = 1
                curr_bboxes = [words[0]["box"]]
                curr_texts = [words[0]["text"]]
                while word_idx < len(words):
                    # switch to a new link
                    if words[word_idx]["box"][0] + 10 <= words[word_idx - 1][
                            "box"][2]:
                        if len("".join(curr_texts[0])) > 0:
                            res.append({
                                "transcription": " ".join(curr_texts),
                                "label": info["label"],
                                "points": get_outer_poly(curr_bboxes),
                                "linking": info["linking"],
                                "id": global_new_id,
                            })
                            if info["id"] not in old_id2new_id_map:
                                old_id2new_id_map[info["id"]] = []
                            old_id2new_id_map[info["id"]].append(global_new_id)
                            global_new_id += 1
                        curr_bboxes = [words[word_idx]["box"]]
                        curr_texts = [words[word_idx]["text"]]
                    else:
                        curr_bboxes.append(words[word_idx]["box"])
                        curr_texts.append(words[word_idx]["text"])
                    word_idx += 1
                if len("".join(curr_texts[0])) > 0:
                    res.append({
                        "transcription": " ".join(curr_texts),
                        "label": info["label"],
                        "points": get_outer_poly(curr_bboxes),
                        "linking": info["linking"],
                        "id": global_new_id,
                    })
                    if info["id"] not in old_id2new_id_map:
                        old_id2new_id_map[info["id"]] = []
                    old_id2new_id_map[info["id"]].append(global_new_id)
                    global_new_id += 1
            res = sorted(
                res, key=lambda r: (r["points"][0][1], r["points"][0][0]))
            for i in range(len(res) - 1):
                for j in range(i, 0, -1):
                    if abs(res[j + 1]["points"][0][1] - res[j]["points"][0][1]) < 20 and \
                            (res[j + 1]["points"][0][0] < res[j]["points"][0][0]):
                        tmp = deepcopy(res[j])
                        res[j] = deepcopy(res[j + 1])
                        res[j + 1] = deepcopy(tmp)
                    else:
                        break
            # re-generate unique ids
            for idx, r in enumerate(res):
                new_links = []
                for link in r["linking"]:
                    # illegal links will be removed
                    if link[0] not in old_id2new_id_map or link[
                            1] not in old_id2new_id_map:
                        continue
                    for src in old_id2new_id_map[link[0]]:
                        for dst in old_id2new_id_map[link[1]]:
                            new_links.append([src, dst])
                res[idx]["linking"] = deepcopy(new_links)

            fn_info_map[anno_fn] = res

    return fn_info_map


def main():
    test_image_dir = "train_data/FUNSD/testing_data/images/"
    test_anno_dir = "train_data/FUNSD/testing_data/annotations/"
    test_output_dir = "train_data/FUNSD/test.json"

    fn_info_map = load_funsd_label(test_image_dir, test_anno_dir)
    with open(test_output_dir, "w") as fout:
        for fn in fn_info_map:
            fout.write(fn + ".png" + "\t" + json.dumps(
                fn_info_map[fn], ensure_ascii=False) + "\n")

    train_image_dir = "train_data/FUNSD/training_data/images/"
    train_anno_dir = "train_data/FUNSD/training_data/annotations/"
    train_output_dir = "train_data/FUNSD/train.json"

    fn_info_map = load_funsd_label(train_image_dir, train_anno_dir)
    with open(train_output_dir, "w") as fout:
        for fn in fn_info_map:
            fout.write(fn + ".png" + "\t" + json.dumps(
                fn_info_map[fn], ensure_ascii=False) + "\n")
    print("====ok====")
    return


if __name__ == "__main__":
    main()