table_master_loss.py 2.7 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
文幕地方's avatar
add ref  
文幕地方 已提交
14
"""
文幕地方's avatar
fix bug  
文幕地方 已提交
15
This code is refer from:
文幕地方's avatar
add ref  
文幕地方 已提交
16 17 18
https://github.com/JiaquanYe/TableMASTER-mmocr/tree/master/mmocr/models/textrecog/losses
"""

文幕地方's avatar
文幕地方 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
import paddle
from paddle import nn


class TableMasterLoss(nn.Layer):
    def __init__(self, ignore_index=-1):
        super(TableMasterLoss, self).__init__()
        self.structure_loss = nn.CrossEntropyLoss(
            ignore_index=ignore_index, reduction='mean')
        self.box_loss = nn.L1Loss(reduction='sum')
        self.eps = 1e-12

    def forward(self, predicts, batch):
        # structure_loss
        structure_probs = predicts['structure_probs']
        structure_targets = batch[1]
        structure_targets = structure_targets[:, 1:]
        structure_probs = structure_probs.reshape(
            [-1, structure_probs.shape[-1]])
        structure_targets = structure_targets.reshape([-1])

        structure_loss = self.structure_loss(structure_probs, structure_targets)
        structure_loss = structure_loss.mean()
        losses = dict(structure_loss=structure_loss)

        # box loss
        bboxes_preds = predicts['loc_preds']
        bboxes_targets = batch[2][:, 1:, :]
        bbox_masks = batch[3][:, 1:]
        # mask empty-bbox or non-bbox structure token's bbox.

        masked_bboxes_preds = bboxes_preds * bbox_masks
        masked_bboxes_targets = bboxes_targets * bbox_masks

        # horizon loss (x and width)
        horizon_sum_loss = self.box_loss(masked_bboxes_preds[:, :, 0::2],
                                         masked_bboxes_targets[:, :, 0::2])
        horizon_loss = horizon_sum_loss / (bbox_masks.sum() + self.eps)
        # vertical loss (y and height)
        vertical_sum_loss = self.box_loss(masked_bboxes_preds[:, :, 1::2],
                                          masked_bboxes_targets[:, :, 1::2])
        vertical_loss = vertical_sum_loss / (bbox_masks.sum() + self.eps)

        horizon_loss = horizon_loss.mean()
        vertical_loss = vertical_loss.mean()
        all_loss = structure_loss + horizon_loss + vertical_loss
        losses.update({
            'loss': all_loss,
            'horizon_bbox_loss': horizon_loss,
            'vertical_bbox_loss': vertical_loss
        })
        return losses