operators.py 14.5 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import sys
import six
import cv2
import numpy as np
z37757's avatar
z37757 已提交
26
import math
W
WenmuZhou 已提交
27 28 29 30 31


class DecodeImage(object):
    """ decode image """

z37757's avatar
z37757 已提交
32 33 34 35 36
    def __init__(self,
                 img_mode='RGB',
                 channel_first=False,
                 ignore_orientation=False,
                 **kwargs):
W
WenmuZhou 已提交
37 38
        self.img_mode = img_mode
        self.channel_first = channel_first
z37757's avatar
z37757 已提交
39
        self.ignore_orientation = ignore_orientation
W
WenmuZhou 已提交
40 41 42 43 44 45 46 47 48 49

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')
z37757's avatar
z37757 已提交
50 51 52 53 54
        if self.ignore_orientation:
            img = cv2.imdecode(img, cv2.IMREAD_IGNORE_ORIENTATION |
                               cv2.IMREAD_COLOR)
        else:
            img = cv2.imdecode(img, 1)
L
LDOUBLEV 已提交
55 56
        if img is None:
            return None
W
WenmuZhou 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        data['image'] = img
        return data


class NormalizeImage(object):
    """ normalize image such as substract mean, divide std
    """

    def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
        if isinstance(scale, str):
            scale = eval(scale)
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

        shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        assert isinstance(img,
                          np.ndarray), "invalid input 'img' in NormalizeImage"
        data['image'] = (
            img.astype('float32') * self.scale - self.mean) / self.std
        return data


class ToCHWImage(object):
    """ convert hwc image to chw image
    """

    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        data['image'] = img.transpose((2, 0, 1))
        return data


T
tink2123 已提交
113 114
class Fasttext(object):
    def __init__(self, path="None", **kwargs):
T
tink2123 已提交
115
        import fasttext
T
tink2123 已提交
116 117 118 119 120 121 122 123 124
        self.fast_model = fasttext.load_model(path)

    def __call__(self, data):
        label = data['label']
        fast_label = self.fast_model[label]
        data['fast_label'] = fast_label
        return data


D
dyning 已提交
125
class KeepKeys(object):
W
WenmuZhou 已提交
126 127 128 129 130 131 132 133 134 135
    def __init__(self, keep_keys, **kwargs):
        self.keep_keys = keep_keys

    def __call__(self, data):
        data_list = []
        for key in self.keep_keys:
            data_list.append(data[key])
        return data_list


z37757's avatar
z37757 已提交
136
class Pad(object):
z37757's avatar
z37757 已提交
137 138 139 140 141 142 143
    def __init__(self, size=None, size_div=32, **kwargs):
        if size is not None and not isinstance(size, (int, list, tuple)):
            raise TypeError("Type of target_size is invalid. Now is {}".format(
                type(size)))
        if isinstance(size, int):
            size = [size, size]
        self.size = size
z37757's avatar
z37757 已提交
144 145 146 147 148
        self.size_div = size_div

    def __call__(self, data):

        img = data['image']
z37757's avatar
z37757 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161
        img_h, img_w = img.shape[0], img.shape[1]
        if self.size:
            resize_h2, resize_w2 = self.size
            assert (
                img_h < resize_h2 and img_w < resize_w2
            ), '(h, w) of target size should be greater than (img_h, img_w)'
        else:
            resize_h2 = max(
                int(math.ceil(img.shape[0] / self.size_div) * self.size_div),
                self.size_div)
            resize_w2 = max(
                int(math.ceil(img.shape[1] / self.size_div) * self.size_div),
                self.size_div)
z37757's avatar
z37757 已提交
162 163 164
        img = cv2.copyMakeBorder(
            img,
            0,
z37757's avatar
z37757 已提交
165
            resize_h2 - img_h,
z37757's avatar
z37757 已提交
166
            0,
z37757's avatar
z37757 已提交
167
            resize_w2 - img_w,
z37757's avatar
z37757 已提交
168 169 170 171 172 173
            cv2.BORDER_CONSTANT,
            value=0)
        data['image'] = img
        return data


L
LDOUBLEV 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187
class Resize(object):
    def __init__(self, size=(640, 640), **kwargs):
        self.size = size

    def resize_image(self, img):
        resize_h, resize_w = self.size
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        return img, [ratio_h, ratio_w]

    def __call__(self, data):
        img = data['image']
188 189
        if 'polys' in data:
            text_polys = data['polys']
L
LDOUBLEV 已提交
190 191

        img_resize, [ratio_h, ratio_w] = self.resize_image(img)
192 193 194 195 196 197 198 199
        if 'polys' in data:
            new_boxes = []
            for box in text_polys:
                new_box = []
                for cord in box:
                    new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
                new_boxes.append(new_box)
            data['polys'] = np.array(new_boxes, dtype=np.float32)
L
LDOUBLEV 已提交
200 201 202 203
        data['image'] = img_resize
        return data


W
WenmuZhou 已提交
204 205 206 207 208 209 210
class DetResizeForTest(object):
    def __init__(self, **kwargs):
        super(DetResizeForTest, self).__init__()
        self.resize_type = 0
        if 'image_shape' in kwargs:
            self.image_shape = kwargs['image_shape']
            self.resize_type = 1
文幕地方's avatar
文幕地方 已提交
211
        elif 'limit_side_len' in kwargs:
W
WenmuZhou 已提交
212 213
            self.limit_side_len = kwargs['limit_side_len']
            self.limit_type = kwargs.get('limit_type', 'min')
文幕地方's avatar
文幕地方 已提交
214
        elif 'resize_long' in kwargs:
M
MissPenguin 已提交
215 216
            self.resize_type = 2
            self.resize_long = kwargs.get('resize_long', 960)
W
WenmuZhou 已提交
217 218 219 220 221 222
        else:
            self.limit_side_len = 736
            self.limit_type = 'min'

    def __call__(self, data):
        img = data['image']
M
MissPenguin 已提交
223
        src_h, src_w, _ = img.shape
W
WenmuZhou 已提交
224 225

        if self.resize_type == 0:
M
MissPenguin 已提交
226 227 228 229
            # img, shape = self.resize_image_type0(img)
            img, [ratio_h, ratio_w] = self.resize_image_type0(img)
        elif self.resize_type == 2:
            img, [ratio_h, ratio_w] = self.resize_image_type2(img)
W
WenmuZhou 已提交
230
        else:
M
MissPenguin 已提交
231 232
            # img, shape = self.resize_image_type1(img)
            img, [ratio_h, ratio_w] = self.resize_image_type1(img)
W
WenmuZhou 已提交
233
        data['image'] = img
M
MissPenguin 已提交
234
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
W
WenmuZhou 已提交
235 236 237 238 239
        return data

    def resize_image_type1(self, img):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
M
MissPenguin 已提交
240 241
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
W
WenmuZhou 已提交
242
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
M
MissPenguin 已提交
243 244
        # return img, np.array([ori_h, ori_w])
        return img, [ratio_h, ratio_w]
W
WenmuZhou 已提交
245 246 247 248 249 250 251 252 253 254

    def resize_image_type0(self, img):
        """
        resize image to a size multiple of 32 which is required by the network
        args:
            img(array): array with shape [h, w, c]
        return(tuple):
            img, (ratio_h, ratio_w)
        """
        limit_side_len = self.limit_side_len
W
WenmuZhou 已提交
255
        h, w, c = img.shape
W
WenmuZhou 已提交
256 257 258 259 260 261 262 263 264 265

        # limit the max side
        if self.limit_type == 'max':
            if max(h, w) > limit_side_len:
                if h > w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
W
WenmuZhou 已提交
266
        elif self.limit_type == 'min':
W
WenmuZhou 已提交
267 268 269 270 271 272 273
            if min(h, w) < limit_side_len:
                if h < w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
W
WenmuZhou 已提交
274
        elif self.limit_type == 'resize_long':
L
LDOUBLEV 已提交
275
            ratio = float(limit_side_len) / max(h, w)
W
WenmuZhou 已提交
276 277
        else:
            raise Exception('not support limit type, image ')
W
WenmuZhou 已提交
278 279 280
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

Z
zhoujun 已提交
281 282
        resize_h = max(int(round(resize_h / 32) * 32), 32)
        resize_w = max(int(round(resize_w / 32) * 32), 32)
W
WenmuZhou 已提交
283 284 285 286 287 288 289 290

        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            img = cv2.resize(img, (int(resize_w), int(resize_h)))
        except:
            print(img.shape, resize_w, resize_h)
            sys.exit(0)
M
MissPenguin 已提交
291 292 293
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return img, [ratio_h, ratio_w]
L
LDOUBLEV 已提交
294

M
MissPenguin 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    def resize_image_type2(self, img):
        h, w, _ = img.shape

        resize_w = w
        resize_h = h

        if resize_h > resize_w:
            ratio = float(self.resize_long) / resize_h
        else:
            ratio = float(self.resize_long) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return img, [ratio_h, ratio_w]
J
Jethong 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339


class E2EResizeForTest(object):
    def __init__(self, **kwargs):
        super(E2EResizeForTest, self).__init__()
        self.max_side_len = kwargs['max_side_len']
        self.valid_set = kwargs['valid_set']

    def __call__(self, data):
        img = data['image']
        src_h, src_w, _ = img.shape
        if self.valid_set == 'totaltext':
            im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
                img, max_side_len=self.max_side_len)
        else:
            im_resized, (ratio_h, ratio_w) = self.resize_image(
                img, max_side_len=self.max_side_len)
        data['image'] = im_resized
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
        return data

    def resize_image_for_totaltext(self, im, max_side_len=512):

340
        h, w, _ = im.shape
J
Jethong 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
        resize_w = w
        resize_h = h
        ratio = 1.25
        if h * ratio > max_side_len:
            ratio = float(max_side_len) / resize_h
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

    def resize_image(self, im, max_side_len=512):
        """
        resize image to a size multiple of max_stride which is required by the network
        :param im: the resized image
        :param max_side_len: limit of max image size to avoid out of memory in gpu
        :return: the resized image and the resize ratio
        """
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # Fix the longer side
        if resize_h > resize_w:
            ratio = float(max_side_len) / resize_h
        else:
            ratio = float(max_side_len) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return im, (ratio_h, ratio_w)
L
add kie  
LDOUBLEV 已提交
386 387 388 389 390 391 392 393 394 395 396 397


class KieResize(object):
    def __init__(self, **kwargs):
        super(KieResize, self).__init__()
        self.max_side, self.min_side = kwargs['img_scale'][0], kwargs[
            'img_scale'][1]

    def __call__(self, data):
        img = data['image']
        points = data['points']
        src_h, src_w, _ = img.shape
L
debug  
LDOUBLEV 已提交
398 399
        im_resized, scale_factor, [ratio_h, ratio_w
                                   ], [new_h, new_w] = self.resize_image(img)
L
add kie  
LDOUBLEV 已提交
400 401 402 403 404
        resize_points = self.resize_boxes(img, points, scale_factor)
        data['ori_image'] = img
        data['ori_boxes'] = points
        data['points'] = resize_points
        data['image'] = im_resized
L
debug  
LDOUBLEV 已提交
405
        data['shape'] = np.array([new_h, new_w])
L
add kie  
LDOUBLEV 已提交
406 407 408
        return data

    def resize_image(self, img):
L
debug  
LDOUBLEV 已提交
409
        norm_img = np.zeros([1024, 1024, 3], dtype='float32')
L
add kie  
LDOUBLEV 已提交
410 411 412 413 414 415
        scale = [512, 1024]
        h, w = img.shape[:2]
        max_long_edge = max(scale)
        max_short_edge = min(scale)
        scale_factor = min(max_long_edge / max(h, w),
                           max_short_edge / min(h, w))
L
debug  
LDOUBLEV 已提交
416 417 418 419 420 421
        resize_w, resize_h = int(w * float(scale_factor) + 0.5), int(h * float(
            scale_factor) + 0.5)
        max_stride = 32
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(img, (resize_w, resize_h))
L
add kie  
LDOUBLEV 已提交
422 423 424 425 426 427
        new_h, new_w = im.shape[:2]
        w_scale = new_w / w
        h_scale = new_h / h
        scale_factor = np.array(
            [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
        norm_img[:new_h, :new_w, :] = im
L
debug  
LDOUBLEV 已提交
428
        return norm_img, scale_factor, [h_scale, w_scale], [new_h, new_w]
L
add kie  
LDOUBLEV 已提交
429 430 431 432 433 434 435

    def resize_boxes(self, im, points, scale_factor):
        points = points * scale_factor
        img_shape = im.shape[:2]
        points[:, 0::2] = np.clip(points[:, 0::2], 0, img_shape[1])
        points[:, 1::2] = np.clip(points[:, 1::2], 0, img_shape[0])
        return points