quant_kl.py 5.1 KB
Newer Older
L
add kl  
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
    os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))

import yaml
import paddle
import paddle.distributed as dist

paddle.seed(2)

from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
40
from ppocr.utils.save_load import load_model
L
add kl  
LDOUBLEV 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
import tools.program as program
import paddleslim
from paddleslim.dygraph.quant import QAT
import numpy as np

dist.get_world_size()


class PACT(paddle.nn.Layer):
    def __init__(self):
        super(PACT, self).__init__()
        alpha_attr = paddle.ParamAttr(
            name=self.full_name() + ".pact",
            initializer=paddle.nn.initializer.Constant(value=20),
            learning_rate=1.0,
            regularizer=paddle.regularizer.L2Decay(2e-5))

        self.alpha = self.create_parameter(
            shape=[1], attr=alpha_attr, dtype='float32')

    def forward(self, x):
        out_left = paddle.nn.functional.relu(x - self.alpha)
        out_right = paddle.nn.functional.relu(-self.alpha - x)
        x = x - out_left + out_right
        return x


quant_config = {
    # weight preprocess type, default is None and no preprocessing is performed. 
    'weight_preprocess_type': None,
    # activation preprocess type, default is None and no preprocessing is performed.
    'activation_preprocess_type': None,
    # weight quantize type, default is 'channel_wise_abs_max'
    'weight_quantize_type': 'channel_wise_abs_max',
    # activation quantize type, default is 'moving_average_abs_max'
    'activation_quantize_type': 'moving_average_abs_max',
    # weight quantize bit num, default is 8
    'weight_bits': 8,
    # activation quantize bit num, default is 8
    'activation_bits': 8,
    # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
    'dtype': 'int8',
    # window size for 'range_abs_max' quantization. default is 10000
    'window_size': 10000,
    # The decay coefficient of moving average, default is 0.9
    'moving_rate': 0.9,
    # for dygraph quantization, layers of type in quantizable_layer_type will be quantized
    'quantizable_layer_type': ['Conv2D', 'Linear'],
}


def sample_generator(loader):
    def __reader__():
        for indx, data in enumerate(loader):
            images = np.array(data[0])
            yield images

    return __reader__


def main(config, device, logger, vdl_writer):
    # init dist environment
    if config['Global']['distributed']:
        dist.init_parallel_env()

    global_config = config['Global']

    # build dataloader
    config['Train']['loader']['num_workers'] = 0
    train_dataloader = build_dataloader(config, 'Train', device, logger)
    if config['Eval']:
        config['Eval']['loader']['num_workers'] = 0
        valid_dataloader = build_dataloader(config, 'Eval', device, logger)
    else:
        valid_dataloader = None

    paddle.enable_static()
    place = paddle.CPUPlace()
    exe = paddle.static.Executor(place)

    if 'inference_model' in global_config.keys():  # , 'inference_model'):
        inference_model_dir = global_config['inference_model']
    else:
        inference_model_dir = os.path.dirname(global_config['pretrained_model'])
        if  not (os.path.exists(os.path.join(inference_model_dir, "inference.pdmodel")) and \
            os.path.exists(os.path.join(inference_model_dir, "inference.pdiparams")) ):
            raise ValueError(
                "Please set inference model dir in Global.inference_model or Global.pretrained_model for post-quantazition"
            )

    paddleslim.quant.quant_post_static(
        executor=exe,
        model_dir=inference_model_dir,
        model_filename='inference.pdmodel',
        params_filename='inference.pdiparams',
        quantize_model_path=global_config['save_inference_dir'],
        sample_generator=sample_generator(train_dataloader),
        save_model_filename='inference.pdmodel',
        save_params_filename='inference.pdiparams',
L
LDOUBLEV 已提交
140 141
        batch_size=1,
        batch_nums=None)
L
add kl  
LDOUBLEV 已提交
142 143 144 145 146


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess(is_train=True)
    main(config, device, logger, vdl_writer)