east_postprocess.py 4.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from .locality_aware_nms import nms_locality
import cv2

23 24
import os
import sys
25
__dir__ = os.path.dirname(os.path.abspath(__file__))
26
sys.path.append(__dir__)
27
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
28

L
LDOUBLEV 已提交
29 30 31 32 33 34 35 36 37 38

class EASTPostPocess(object):
    """
    The post process for EAST.
    """

    def __init__(self, params):
        self.score_thresh = params['score_thresh']
        self.cover_thresh = params['cover_thresh']
        self.nms_thresh = params['nms_thresh']
39 40 41 42 43
        
        # c++ la-nms is faster, but only support python 3.5
        self.is_python35 = False
        if sys.version_info.major == 3 and sys.version_info.minor == 5:
            self.is_python35 = True
L
LDOUBLEV 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

    def restore_rectangle_quad(self, origin, geometry):
        """
        Restore rectangle from quadrangle.
        """
        # quad
        origin_concat = np.concatenate(
            (origin, origin, origin, origin), axis=1)  # (n, 8)
        pred_quads = origin_concat - geometry
        pred_quads = pred_quads.reshape((-1, 4, 2))  # (n, 4, 2)
        return pred_quads

    def detect(self,
               score_map,
               geo_map,
               score_thresh=0.8,
               cover_thresh=0.1,
               nms_thresh=0.2):
        """
        restore text boxes from score map and geo map
        """
        score_map = score_map[0]
        geo_map = np.swapaxes(geo_map, 1, 0)
        geo_map = np.swapaxes(geo_map, 1, 2)
        # filter the score map
        xy_text = np.argwhere(score_map > score_thresh)
        if len(xy_text) == 0:
            return []
        # sort the text boxes via the y axis
        xy_text = xy_text[np.argsort(xy_text[:, 0])]
        #restore quad proposals
        text_box_restored = self.restore_rectangle_quad(
            xy_text[:, ::-1] * 4, geo_map[xy_text[:, 0], xy_text[:, 1], :])
        boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
        boxes[:, :8] = text_box_restored.reshape((-1, 8))
        boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
80
        if self.is_python35:
81
            import lanms
82 83 84
            boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)
        else:
            boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
L
LDOUBLEV 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        if boxes.shape[0] == 0:
            return []
        # Here we filter some low score boxes by the average score map, 
        #   this is different from the orginal paper.
        for i, box in enumerate(boxes):
            mask = np.zeros_like(score_map, dtype=np.uint8)
            cv2.fillPoly(mask, box[:8].reshape(
                (-1, 4, 2)).astype(np.int32) // 4, 1)
            boxes[i, 8] = cv2.mean(score_map, mask)[0]
        boxes = boxes[boxes[:, 8] > cover_thresh]
        return boxes

    def sort_poly(self, p):
        """
        Sort polygons.
        """
        min_axis = np.argmin(np.sum(p, axis=1))
        p = p[[min_axis, (min_axis + 1) % 4,\
            (min_axis + 2) % 4, (min_axis + 3) % 4]]
        if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
            return p
        else:
            return p[[0, 3, 2, 1]]

    def __call__(self, outs_dict, ratio_list):
        score_list = outs_dict['f_score']
        geo_list = outs_dict['f_geo']
        img_num = len(ratio_list)
        dt_boxes_list = []
        for ino in range(img_num):
            score = score_list[ino]
            geo = geo_list[ino]
            boxes = self.detect(
                score_map=score,
                geo_map=geo,
                score_thresh=self.score_thresh,
                cover_thresh=self.cover_thresh,
                nms_thresh=self.nms_thresh)
            boxes_norm = []
            if len(boxes) > 0:
                ratio_h, ratio_w = ratio_list[ino]
                boxes = boxes[:, :8].reshape((-1, 4, 2))
                boxes[:, :, 0] /= ratio_w
                boxes[:, :, 1] /= ratio_h
                for i_box, box in enumerate(boxes):
                    box = self.sort_poly(box.astype(np.int32))
                    if np.linalg.norm(box[0] - box[1]) < 5 \
                        or np.linalg.norm(box[3] - box[0]) < 5:
                        continue
                    boxes_norm.append(box)
            dt_boxes_list.append(np.array(boxes_norm))
        return dt_boxes_list