label_ops.py 45.8 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import copy
W
WenmuZhou 已提交
21
import numpy as np
T
tink2123 已提交
22
import string
L
add kie  
LDOUBLEV 已提交
23
from shapely.geometry import LineString, Point, Polygon
L
LDOUBLEV 已提交
24
import json
A
andyjpaddle 已提交
25
import copy
A
andyjpaddle 已提交
26 27
from random import sample

T
tink2123 已提交
28
from ppocr.utils.logging import get_logger
littletomatodonkey's avatar
littletomatodonkey 已提交
29
from ppocr.data.imaug.vqa.augment import order_by_tbyx
T
tink2123 已提交
30

W
WenmuZhou 已提交
31 32 33 34 35 36 37 38 39 40 41 42

class ClsLabelEncode(object):
    def __init__(self, label_list, **kwargs):
        self.label_list = label_list

    def __call__(self, data):
        label = data['label']
        if label not in self.label_list:
            return None
        label = self.label_list.index(label)
        data['label'] = label
        return data
W
WenmuZhou 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62


class DetLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
L
LDOUBLEV 已提交
63 64
        if len(boxes) == 0:
            return None
M
MissPenguin 已提交
65
        boxes = self.expand_points_num(boxes)
W
WenmuZhou 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
        data['ignore_tags'] = txt_tags
        return data

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
L
fix  
LDOUBLEV 已提交
79 80 81 82
        tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
        diff = np.diff(np.array(tmp), axis=1)
        rect[1] = tmp[np.argmin(diff)]
        rect[3] = tmp[np.argmax(diff)]
W
WenmuZhou 已提交
83 84
        return rect

M
MissPenguin 已提交
85 86 87 88 89 90 91 92 93 94 95
    def expand_points_num(self, boxes):
        max_points_num = 0
        for box in boxes:
            if len(box) > max_points_num:
                max_points_num = len(box)
        ex_boxes = []
        for box in boxes:
            ex_box = box + [box[-1]] * (max_points_num - len(box))
            ex_boxes.append(ex_box)
        return ex_boxes

W
WenmuZhou 已提交
96 97 98 99 100 101 102

class BaseRecLabelEncode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
A
andyjpaddle 已提交
103 104
                 use_space_char=False,
                 lower=False):
W
WenmuZhou 已提交
105 106

        self.max_text_len = max_text_length
T
tink2123 已提交
107 108
        self.beg_str = "sos"
        self.end_str = "eos"
A
andyjpaddle 已提交
109
        self.lower = lower
T
tink2123 已提交
110 111 112 113 114 115

        if character_dict_path is None:
            logger = get_logger()
            logger.warning(
                "The character_dict_path is None, model can only recognize number and lower letters"
            )
W
WenmuZhou 已提交
116 117
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
T
tink2123 已提交
118 119
            self.lower = True
        else:
120
            self.character_str = []
W
WenmuZhou 已提交
121 122 123 124
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
125
                    self.character_str.append(line)
W
WenmuZhou 已提交
126
            if use_space_char:
127
                self.character_str.append(" ")
W
WenmuZhou 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
            dict_character = list(self.character_str)
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
W
WenmuZhou 已提交
148
        if len(text) == 0 or len(text) > self.max_text_len:
W
WenmuZhou 已提交
149
            return None
T
tink2123 已提交
150
        if self.lower:
W
WenmuZhou 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                # logger = get_logger()
                # logger.warning('{} is not in dict'.format(char))
                continue
            text_list.append(self.dict[char])
        if len(text_list) == 0:
            return None
        return text_list


class CTCLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
172 173
        super(CTCLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
174 175 176 177 178 179 180 181 182

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
183 184 185 186 187

        label = [0] * len(self.character)
        for x in text:
            label[x] += 1
        data['label_ace'] = np.array(label)
W
WenmuZhou 已提交
188 189 190 191 192 193 194
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


J
Jethong 已提交
195
class E2ELabelEncodeTest(BaseRecLabelEncode):
J
Jethong 已提交
196 197 198 199 200
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
201 202
        super(E2ELabelEncodeTest, self).__init__(
            max_text_length, character_dict_path, use_space_char)
J
Jethong 已提交
203 204

    def __call__(self, data):
J
Jethong 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        import json
        padnum = len(self.dict)
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        data['polys'] = boxes
J
Jethong 已提交
223
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
224
        temp_texts = []
J
Jethong 已提交
225
        for text in txts:
J
Jethong 已提交
226
            text = text.lower()
J
Jethong 已提交
227 228 229
            text = self.encode(text)
            if text is None:
                return None
J
Jethong 已提交
230 231
            text = text + [padnum] * (self.max_text_len - len(text)
                                      )  # use 36 to pad
J
Jethong 已提交
232 233 234 235 236
            temp_texts.append(text)
        data['texts'] = np.array(temp_texts)
        return data


J
Jethong 已提交
237
class E2ELabelEncodeTrain(object):
J
Jethong 已提交
238 239
    def __init__(self, **kwargs):
        pass
J
Jethong 已提交
240 241

    def __call__(self, data):
J
Jethong 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        import json
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
J
Jethong 已提交
261
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
262 263 264
        return data


L
add kie  
LDOUBLEV 已提交
265
class KieLabelEncode(object):
266 267 268 269 270 271
    def __init__(self,
                 character_dict_path,
                 class_path,
                 norm=10,
                 directed=False,
                 **kwargs):
L
add kie  
LDOUBLEV 已提交
272 273
        super(KieLabelEncode, self).__init__()
        self.dict = dict({'': 0})
274
        self.label2classid_map = dict()
L
fix win  
LDOUBLEV 已提交
275
        with open(character_dict_path, 'r', encoding='utf-8') as fr:
L
add kie  
LDOUBLEV 已提交
276 277 278 279 280
            idx = 1
            for line in fr:
                char = line.strip()
                self.dict[char] = idx
                idx += 1
281 282 283 284 285
        with open(class_path, "r") as fin:
            lines = fin.readlines()
            for idx, line in enumerate(lines):
                line = line.strip("\n")
                self.label2classid_map[line] = idx
L
add kie  
LDOUBLEV 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        self.norm = norm
        self.directed = directed

    def compute_relation(self, boxes):
        """Compute relation between every two boxes."""
        x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
        x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
        ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
        dxs = (x1s[:, 0][None] - x1s) / self.norm
        dys = (y1s[:, 0][None] - y1s) / self.norm
        xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
        whs = ws / hs + np.zeros_like(xhhs)
        relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
        bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
        return relations, bboxes

    def pad_text_indices(self, text_inds):
        """Pad text index to same length."""
L
debug  
LDOUBLEV 已提交
304
        max_len = 300
L
add kie  
LDOUBLEV 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
        recoder_len = max([len(text_ind) for text_ind in text_inds])
        padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
        for idx, text_ind in enumerate(text_inds):
            padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
        return padded_text_inds, recoder_len

    def list_to_numpy(self, ann_infos):
        """Convert bboxes, relations, texts and labels to ndarray."""
        boxes, text_inds = ann_infos['points'], ann_infos['text_inds']
        boxes = np.array(boxes, np.int32)
        relations, bboxes = self.compute_relation(boxes)

        labels = ann_infos.get('labels', None)
        if labels is not None:
            labels = np.array(labels, np.int32)
            edges = ann_infos.get('edges', None)
            if edges is not None:
                labels = labels[:, None]
                edges = np.array(edges)
                edges = (edges[:, None] == edges[None, :]).astype(np.int32)
                if self.directed:
                    edges = (edges & labels == 1).astype(np.int32)
                np.fill_diagonal(edges, -1)
                labels = np.concatenate([labels, edges], -1)
        padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
L
debug  
LDOUBLEV 已提交
330
        max_num = 300
L
add kie  
LDOUBLEV 已提交
331 332
        temp_bboxes = np.zeros([max_num, 4])
        h, _ = bboxes.shape
那珈落's avatar
那珈落 已提交
333
        temp_bboxes[:h, :] = bboxes
L
add kie  
LDOUBLEV 已提交
334 335 336 337

        temp_relations = np.zeros([max_num, max_num, 5])
        temp_relations[:h, :h, :] = relations

L
debug  
LDOUBLEV 已提交
338
        temp_padded_text_inds = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
339 340
        temp_padded_text_inds[:h, :] = padded_text_inds

L
debug  
LDOUBLEV 已提交
341
        temp_labels = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
        temp_labels[:h, :h + 1] = labels

        tag = np.array([h, recoder_len])
        return dict(
            image=ann_infos['image'],
            points=temp_bboxes,
            relations=temp_relations,
            texts=temp_padded_text_inds,
            labels=temp_labels,
            tag=tag)

    def convert_canonical(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        points = [Point(points_x[i], points_y[i]) for i in range(4)]

        polygon = Polygon([(p.x, p.y) for p in points])
        min_x, min_y, _, _ = polygon.bounds
        points_to_lefttop = [
            LineString([points[i], Point(min_x, min_y)]) for i in range(4)
        ]
        distances = np.array([line.length for line in points_to_lefttop])
        sort_dist_idx = np.argsort(distances)
        lefttop_idx = sort_dist_idx[0]

        if lefttop_idx == 0:
            point_orders = [0, 1, 2, 3]
        elif lefttop_idx == 1:
            point_orders = [1, 2, 3, 0]
        elif lefttop_idx == 2:
            point_orders = [2, 3, 0, 1]
        else:
            point_orders = [3, 0, 1, 2]

        sorted_points_x = [points_x[i] for i in point_orders]
        sorted_points_y = [points_y[j] for j in point_orders]

        return sorted_points_x, sorted_points_y

    def sort_vertex(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        x = np.array(points_x)
        y = np.array(points_y)
        center_x = np.sum(x) * 0.25
        center_y = np.sum(y) * 0.25

        x_arr = np.array(x - center_x)
        y_arr = np.array(y - center_y)

        angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
        sort_idx = np.argsort(angle)

        sorted_points_x, sorted_points_y = [], []
        for i in range(4):
            sorted_points_x.append(points_x[sort_idx[i]])
            sorted_points_y.append(points_y[sort_idx[i]])

        return self.convert_canonical(sorted_points_x, sorted_points_y)

    def __call__(self, data):
        import json
        label = data['label']
        annotations = json.loads(label)
        boxes, texts, text_inds, labels, edges = [], [], [], [], []
        for ann in annotations:
            box = ann['points']
            x_list = [box[i][0] for i in range(4)]
            y_list = [box[i][1] for i in range(4)]
            sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
            sorted_box = []
            for x, y in zip(sorted_x_list, sorted_y_list):
                sorted_box.append(x)
                sorted_box.append(y)
            boxes.append(sorted_box)
            text = ann['transcription']
            texts.append(ann['transcription'])
            text_ind = [self.dict[c] for c in text if c in self.dict]
            text_inds.append(text_ind)
L
fix  
LDOUBLEV 已提交
425
            if 'label' in ann.keys():
426
                labels.append(self.label2classid_map[ann['label']])
L
fix  
LDOUBLEV 已提交
427 428
            elif 'key_cls' in ann.keys():
                labels.append(ann['key_cls'])
L
fix  
LDOUBLEV 已提交
429
            else:
文幕地方's avatar
文幕地方 已提交
430 431 432
                raise ValueError(
                    "Cannot found 'key_cls' in ann.keys(), please check your training annotation."
                )
L
add kie  
LDOUBLEV 已提交
433 434 435 436 437 438 439 440 441 442 443 444
            edges.append(ann.get('edge', 0))
        ann_infos = dict(
            image=data['image'],
            points=boxes,
            texts=texts,
            text_inds=text_inds,
            edges=edges,
            labels=labels)

        return self.list_to_numpy(ann_infos)


W
WenmuZhou 已提交
445 446 447 448 449 450 451 452
class AttnLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
453 454
        super(AttnLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
455 456

    def add_special_char(self, dict_character):
L
LDOUBLEV 已提交
457 458 459
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
W
WenmuZhou 已提交
460 461
        return dict_character

L
LDOUBLEV 已提交
462 463
    def __call__(self, data):
        text = data['label']
W
WenmuZhou 已提交
464
        text = self.encode(text)
L
LDOUBLEV 已提交
465 466
        if text is None:
            return None
L
LDOUBLEV 已提交
467
        if len(text) >= self.max_text_len:
L
LDOUBLEV 已提交
468 469 470
            return None
        data['length'] = np.array(len(text))
        text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
T
tink2123 已提交
471
                                                               - len(text) - 2)
L
LDOUBLEV 已提交
472 473 474 475 476 477 478
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]
W
WenmuZhou 已提交
479 480 481 482 483 484 485 486 487 488

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
T
tink2123 已提交
489 490


T
tink2123 已提交
491 492 493 494 495 496 497 498
class SEEDLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
499 500
        super(SEEDLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
501 502

    def add_special_char(self, dict_character):
T
tink2123 已提交
503
        self.padding = "padding"
T
tink2123 已提交
504
        self.end_str = "eos"
T
tink2123 已提交
505 506 507 508
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding, self.unknown
        ]
T
tink2123 已提交
509 510 511 512 513 514 515 516 517
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
T
rm anno  
tink2123 已提交
518
        data['length'] = np.array(len(text)) + 1  # conclude eos
T
tink2123 已提交
519 520
        text = text + [len(self.character) - 3] + [len(self.character) - 2] * (
            self.max_text_len - len(text) - 1)
T
tink2123 已提交
521 522 523 524
        data['label'] = np.array(text)
        return data


T
tink2123 已提交
525 526 527 528 529 530 531 532
class SRNLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length=25,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
533 534
        super(SRNLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
535 536 537 538 539 540 541 542

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
T
tink2123 已提交
543
        char_num = len(self.character)
T
tink2123 已提交
544 545 546 547 548
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
T
tink2123 已提交
549
        text = text + [char_num - 1] * (self.max_text_len - len(text))
T
tink2123 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
M
MissPenguin 已提交
567

L
LDOUBLEV 已提交
568

文幕地方's avatar
文幕地方 已提交
569
class TableLabelEncode(AttnLabelEncode):
M
MissPenguin 已提交
570
    """ Convert between text-label and text-index """
L
LDOUBLEV 已提交
571 572 573 574

    def __init__(self,
                 max_text_length,
                 character_dict_path,
文幕地方's avatar
文幕地方 已提交
575 576 577
                 replace_empty_cell_token=False,
                 merge_no_span_structure=False,
                 learn_empty_box=False,
文幕地方's avatar
fix bug  
文幕地方 已提交
578
                 point_num=2,
L
LDOUBLEV 已提交
579
                 **kwargs):
文幕地方's avatar
文幕地方 已提交
580 581 582 583 584 585 586
        self.max_text_len = max_text_length
        self.lower = False
        self.learn_empty_box = learn_empty_box
        self.merge_no_span_structure = merge_no_span_structure
        self.replace_empty_cell_token = replace_empty_cell_token

        dict_character = []
M
MissPenguin 已提交
587 588
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
文幕地方's avatar
文幕地方 已提交
589 590 591 592 593 594 595 596 597
            for line in lines:
                line = line.decode('utf-8').strip("\n").strip("\r\n")
                dict_character.append(line)

        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.idx2char = {v: k for k, v in self.dict.items()}
L
LDOUBLEV 已提交
598

文幕地方's avatar
文幕地方 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
        self.character = dict_character
        self.point_num = point_num
        self.pad_idx = self.dict[self.beg_str]
        self.start_idx = self.dict[self.beg_str]
        self.end_idx = self.dict[self.end_str]

        self.td_token = ['<td>', '<td', '<eb></eb>', '<td></td>']
        self.empty_bbox_token_dict = {
            "[]": '<eb></eb>',
            "[' ']": '<eb1></eb1>',
            "['<b>', ' ', '</b>']": '<eb2></eb2>',
            "['\\u2028', '\\u2028']": '<eb3></eb3>',
            "['<sup>', ' ', '</sup>']": '<eb4></eb4>',
            "['<b>', '</b>']": '<eb5></eb5>',
            "['<i>', ' ', '</i>']": '<eb6></eb6>',
            "['<b>', '<i>', '</i>', '</b>']": '<eb7></eb7>',
            "['<b>', '<i>', ' ', '</i>', '</b>']": '<eb8></eb8>',
            "['<i>', '</i>']": '<eb9></eb9>',
            "['<b>', ' ', '\\u2028', ' ', '\\u2028', ' ', '</b>']":
            '<eb10></eb10>',
        }

    @property
    def _max_text_len(self):
        return self.max_text_len + 2
L
LDOUBLEV 已提交
624

M
MissPenguin 已提交
625 626
    def __call__(self, data):
        cells = data['cells']
文幕地方's avatar
文幕地方 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640
        structure = data['structure']
        if self.merge_no_span_structure:
            structure = self._merge_no_span_structure(structure)
        if self.replace_empty_cell_token:
            structure = self._replace_empty_cell_token(structure, cells)
        # remove empty token and add " " to span token
        new_structure = []
        for token in structure:
            if token != '':
                if 'span' in token and token[0] != ' ':
                    token = ' ' + token
                new_structure.append(token)
        # encode structure
        structure = self.encode(new_structure)
M
MissPenguin 已提交
641 642
        if structure is None:
            return None
文幕地方's avatar
文幕地方 已提交
643 644 645 646 647

        structure = [self.start_idx] + structure + [self.end_idx
                                                    ]  # add sos abd eos
        structure = structure + [self.pad_idx] * (self._max_text_len -
                                                  len(structure))  # pad
M
MissPenguin 已提交
648 649 650
        structure = np.array(structure)
        data['structure'] = structure

文幕地方's avatar
文幕地方 已提交
651
        if len(structure) > self._max_text_len:
M
MissPenguin 已提交
652 653
            return None

文幕地方's avatar
文幕地方 已提交
654 655
        # encode box
        bboxes = np.zeros(
文幕地方's avatar
fix bug  
文幕地方 已提交
656
            (self._max_text_len, self.point_num * 2), dtype=np.float32)
文幕地方's avatar
文幕地方 已提交
657 658 659
        bbox_masks = np.zeros((self._max_text_len, 1), dtype=np.float32)

        bbox_idx = 0
文幕地方's avatar
fix bug  
文幕地方 已提交
660

文幕地方's avatar
文幕地方 已提交
661 662
        for i, token in enumerate(structure):
            if self.idx2char[token] in self.td_token:
文幕地方's avatar
fix bug  
文幕地方 已提交
663 664
                if 'bbox' in cells[bbox_idx] and len(cells[bbox_idx][
                        'tokens']) > 0:
文幕地方's avatar
文幕地方 已提交
665 666 667 668 669 670 671 672 673
                    bbox = cells[bbox_idx]['bbox'].copy()
                    bbox = np.array(bbox, dtype=np.float32).reshape(-1)
                    bboxes[i] = bbox
                    bbox_masks[i] = 1.0
                if self.learn_empty_box:
                    bbox_masks[i] = 1.0
                bbox_idx += 1
        data['bboxes'] = bboxes
        data['bbox_masks'] = bbox_masks
M
MissPenguin 已提交
674 675
        return data

文幕地方's avatar
文幕地方 已提交
676
    def _merge_no_span_structure(self, structure):
M
MissPenguin 已提交
677
        """
文幕地方's avatar
fix bug  
文幕地方 已提交
678
        This code is refer from:
文幕地方's avatar
add ref  
文幕地方 已提交
679 680
        https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py
        """
文幕地方's avatar
文幕地方 已提交
681 682 683 684 685 686 687 688 689 690 691 692
        new_structure = []
        i = 0
        while i < len(structure):
            token = structure[i]
            if token == '<td>':
                token = '<td></td>'
                i += 1
            new_structure.append(token)
            i += 1
        return new_structure

    def _replace_empty_cell_token(self, token_list, cells):
文幕地方's avatar
add ref  
文幕地方 已提交
693 694 695 696 697
        """
        This fun code is refer from:
        https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py
        """

文幕地方's avatar
文幕地方 已提交
698 699 700 701 702 703 704 705 706
        bbox_idx = 0
        add_empty_bbox_token_list = []
        for token in token_list:
            if token in ['<td></td>', '<td', '<td>']:
                if 'bbox' not in cells[bbox_idx].keys():
                    content = str(cells[bbox_idx]['tokens'])
                    token = self.empty_bbox_token_dict[content]
                add_empty_bbox_token_list.append(token)
                bbox_idx += 1
M
MissPenguin 已提交
707
            else:
文幕地方's avatar
文幕地方 已提交
708 709
                add_empty_bbox_token_list.append(token)
        return add_empty_bbox_token_list
M
MissPenguin 已提交
710 711


文幕地方's avatar
文幕地方 已提交
712 713 714 715 716 717 718 719 720
class TableMasterLabelEncode(TableLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 replace_empty_cell_token=False,
                 merge_no_span_structure=False,
                 learn_empty_box=False,
文幕地方's avatar
fix bug  
文幕地方 已提交
721
                 point_num=2,
文幕地方's avatar
文幕地方 已提交
722 723 724 725
                 **kwargs):
        super(TableMasterLabelEncode, self).__init__(
            max_text_length, character_dict_path, replace_empty_cell_token,
            merge_no_span_structure, learn_empty_box, point_num, **kwargs)
文幕地方's avatar
fix bug  
文幕地方 已提交
726 727
        self.pad_idx = self.dict[self.pad_str]
        self.unknown_idx = self.dict[self.unknown_str]
文幕地方's avatar
文幕地方 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772

    @property
    def _max_text_len(self):
        return self.max_text_len

    def add_special_char(self, dict_character):
        self.beg_str = '<SOS>'
        self.end_str = '<EOS>'
        self.unknown_str = '<UKN>'
        self.pad_str = '<PAD>'
        dict_character = dict_character
        dict_character = dict_character + [
            self.unknown_str, self.beg_str, self.end_str, self.pad_str
        ]
        return dict_character


class TableBoxEncode(object):
    def __init__(self, use_xywh=False, **kwargs):
        self.use_xywh = use_xywh

    def __call__(self, data):
        img_height, img_width = data['image'].shape[:2]
        bboxes = data['bboxes']
        if self.use_xywh and bboxes.shape[1] == 4:
            bboxes = self.xyxy2xywh(bboxes)
        bboxes[:, 0::2] /= img_width
        bboxes[:, 1::2] /= img_height
        data['bboxes'] = bboxes
        return data

    def xyxy2xywh(self, bboxes):
        """
        Convert coord (x1,y1,x2,y2) to (x,y,w,h).
        where (x1,y1) is top-left, (x2,y2) is bottom-right.
        (x,y) is bbox center and (w,h) is width and height.
        :param bboxes: (x1, y1, x2, y2)
        :return:
        """
        new_bboxes = np.empty_like(bboxes)
        new_bboxes[:, 0] = (bboxes[:, 0] + bboxes[:, 2]) / 2  # x center
        new_bboxes[:, 1] = (bboxes[:, 1] + bboxes[:, 3]) / 2  # y center
        new_bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]  # width
        new_bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]  # height
        return new_bboxes
A
andyjpaddle 已提交
773 774 775 776 777 778 779 780 781 782


class SARLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
783 784
        super(SARLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
A
andyjpaddle 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1

        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        target = [self.start_idx] + text + [self.end_idx]
        padded_text = [self.padding_idx for _ in range(self.max_text_len)]
T
tink2123 已提交
810

A
andyjpaddle 已提交
811 812 813 814 815 816
        padded_text[:len(target)] = target
        data['label'] = np.array(padded_text)
        return data

    def get_ignored_tokens(self):
        return [self.padding_idx]
817 818


819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
class PRENLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 use_space_char=False,
                 **kwargs):
        super(PRENLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def encode(self, text):
        if len(text) == 0 or len(text) >= self.max_text_len:
            return None
        if self.lower:
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                text_list.append(self.unknown_idx)
            else:
                text_list.append(self.dict[char])
        text_list.append(self.end_idx)
        if len(text_list) < self.max_text_len:
            text_list += [self.padding_idx] * (
                self.max_text_len - len(text_list))
        return text_list

    def __call__(self, data):
        text = data['label']
        encoded_text = self.encode(text)
        if encoded_text is None:
            return None
        data['label'] = np.array(encoded_text)
        return data


866 867
class VQATokenLabelEncode(object):
    """
文幕地方's avatar
文幕地方 已提交
868
    Label encode for NLP VQA methods
869 870 871 872 873 874 875
    """

    def __init__(self,
                 class_path,
                 contains_re=False,
                 add_special_ids=False,
                 algorithm='LayoutXLM',
876
                 use_textline_bbox_info=True,
littletomatodonkey's avatar
littletomatodonkey 已提交
877
                 order_method=None,
878 879 880 881
                 infer_mode=False,
                 ocr_engine=None,
                 **kwargs):
        super(VQATokenLabelEncode, self).__init__()
文幕地方's avatar
文幕地方 已提交
882
        from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer
883 884 885 886 887 888 889 890 891
        from ppocr.utils.utility import load_vqa_bio_label_maps
        tokenizer_dict = {
            'LayoutXLM': {
                'class': LayoutXLMTokenizer,
                'pretrained_model': 'layoutxlm-base-uncased'
            },
            'LayoutLM': {
                'class': LayoutLMTokenizer,
                'pretrained_model': 'layoutlm-base-uncased'
文幕地方's avatar
文幕地方 已提交
892 893 894 895
            },
            'LayoutLMv2': {
                'class': LayoutLMv2Tokenizer,
                'pretrained_model': 'layoutlmv2-base-uncased'
896 897 898 899 900 901 902 903 904 905
            }
        }
        self.contains_re = contains_re
        tokenizer_config = tokenizer_dict[algorithm]
        self.tokenizer = tokenizer_config['class'].from_pretrained(
            tokenizer_config['pretrained_model'])
        self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
        self.add_special_ids = add_special_ids
        self.infer_mode = infer_mode
        self.ocr_engine = ocr_engine
906
        self.use_textline_bbox_info = use_textline_bbox_info
littletomatodonkey's avatar
littletomatodonkey 已提交
907 908
        self.order_method = order_method
        assert self.order_method in [None, "tb-yx"]
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942

    def split_bbox(self, bbox, text, tokenizer):
        words = text.split()
        token_bboxes = []
        curr_word_idx = 0
        x1, y1, x2, y2 = bbox
        unit_w = (x2 - x1) / len(text)
        for idx, word in enumerate(words):
            curr_w = len(word) * unit_w
            word_bbox = [x1, y1, x1 + curr_w, y2]
            token_bboxes.extend([word_bbox] * len(tokenizer.tokenize(word)))
            x1 += (len(word) + 1) * unit_w
        return token_bboxes

    def filter_empty_contents(self, ocr_info):
        """
        find out the empty texts and remove the links
        """
        new_ocr_info = []
        empty_index = []
        for idx, info in enumerate(ocr_info):
            if len(info["transcription"]) > 0:
                new_ocr_info.append(copy.deepcopy(info))
            else:
                empty_index.append(info["id"])

        for idx, info in enumerate(new_ocr_info):
            new_link = []
            for link in info["linking"]:
                if link[0] in empty_index or link[1] in empty_index:
                    continue
                new_link.append(link)
            new_ocr_info[idx]["linking"] = new_link
        return new_ocr_info
943 944

    def __call__(self, data):
文幕地方's avatar
文幕地方 已提交
945 946
        # load bbox and label info
        ocr_info = self._load_ocr_info(data)
947

littletomatodonkey's avatar
littletomatodonkey 已提交
948 949 950 951 952 953 954 955
        for idx in range(len(ocr_info)):
            if "bbox" not in ocr_info[idx]:
                ocr_info[idx]["bbox"] = self.trans_poly_to_bbox(ocr_info[idx][
                    "points"])

        if self.order_method == "tb-yx":
            ocr_info = order_by_tbyx(ocr_info)

956 957 958 959 960
        # for re
        train_re = self.contains_re and not self.infer_mode
        if train_re:
            ocr_info = self.filter_empty_contents(ocr_info)

文幕地方's avatar
文幕地方 已提交
961
        height, width, _ = data['image'].shape
962 963 964 965 966

        words_list = []
        bbox_list = []
        input_ids_list = []
        token_type_ids_list = []
文幕地方's avatar
文幕地方 已提交
967
        segment_offset_id = []
968 969
        gt_label_list = []

文幕地方's avatar
文幕地方 已提交
970 971 972 973 974 975 976
        entities = []

        if train_re:
            relations = []
            id2label = {}
            entity_id_to_index_map = {}
            empty_entity = set()
文幕地方's avatar
文幕地方 已提交
977 978 979 980

        data['ocr_info'] = copy.deepcopy(ocr_info)

        for info in ocr_info:
981 982 983
            text = info["transcription"]
            if len(text) <= 0:
                continue
文幕地方's avatar
文幕地方 已提交
984
            if train_re:
985
                # for re
986
                if len(text) == 0:
987 988 989 990
                    empty_entity.add(info["id"])
                    continue
                id2label[info["id"]] = info["label"]
                relations.extend([tuple(sorted(l)) for l in info["linking"]])
文幕地方's avatar
文幕地方 已提交
991
            # smooth_box
992
            info["bbox"] = self.trans_poly_to_bbox(info["points"])
993 994

            encode_res = self.tokenizer.encode(
文幕地方's avatar
文幕地方 已提交
995 996 997 998
                text,
                pad_to_max_seq_len=False,
                return_attention_mask=True,
                return_token_type_ids=True)
999 1000 1001 1002 1003 1004 1005 1006

            if not self.add_special_ids:
                # TODO: use tok.all_special_ids to remove
                encode_res["input_ids"] = encode_res["input_ids"][1:-1]
                encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
                                                                            -1]
                encode_res["attention_mask"] = encode_res["attention_mask"][1:
                                                                            -1]
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

            if self.use_textline_bbox_info:
                bbox = [info["bbox"]] * len(encode_res["input_ids"])
            else:
                bbox = self.split_bbox(info["bbox"], info["transcription"],
                                       self.tokenizer)
            if len(bbox) <= 0:
                continue
            bbox = self._smooth_box(bbox, height, width)
            if self.add_special_ids:
                bbox.insert(0, [0, 0, 0, 0])
                bbox.append([0, 0, 0, 0])

文幕地方's avatar
文幕地方 已提交
1020 1021 1022 1023 1024 1025
            # parse label
            if not self.infer_mode:
                label = info['label']
                gt_label = self._parse_label(label, encode_res)

            # construct entities for re
文幕地方's avatar
文幕地方 已提交
1026 1027 1028 1029
            if train_re:
                if gt_label[0] != self.label2id_map["O"]:
                    entity_id_to_index_map[info["id"]] = len(entities)
                    label = label.upper()
1030 1031 1032 1033
                    entities.append({
                        "start": len(input_ids_list),
                        "end":
                        len(input_ids_list) + len(encode_res["input_ids"]),
文幕地方's avatar
文幕地方 已提交
1034
                        "label": label.upper(),
1035
                    })
文幕地方's avatar
文幕地方 已提交
1036 1037 1038 1039 1040 1041
            else:
                entities.append({
                    "start": len(input_ids_list),
                    "end": len(input_ids_list) + len(encode_res["input_ids"]),
                    "label": 'O',
                })
1042 1043
            input_ids_list.extend(encode_res["input_ids"])
            token_type_ids_list.extend(encode_res["token_type_ids"])
1044
            bbox_list.extend(bbox)
1045
            words_list.append(text)
文幕地方's avatar
文幕地方 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
            segment_offset_id.append(len(input_ids_list))
            if not self.infer_mode:
                gt_label_list.extend(gt_label)

        data['input_ids'] = input_ids_list
        data['token_type_ids'] = token_type_ids_list
        data['bbox'] = bbox_list
        data['attention_mask'] = [1] * len(input_ids_list)
        data['labels'] = gt_label_list
        data['segment_offset_id'] = segment_offset_id
1056 1057 1058 1059
        data['tokenizer_params'] = dict(
            padding_side=self.tokenizer.padding_side,
            pad_token_type_id=self.tokenizer.pad_token_type_id,
            pad_token_id=self.tokenizer.pad_token_id)
文幕地方's avatar
文幕地方 已提交
1060
        data['entities'] = entities
1061

文幕地方's avatar
文幕地方 已提交
1062 1063 1064 1065 1066
        if train_re:
            data['relations'] = relations
            data['id2label'] = id2label
            data['empty_entity'] = empty_entity
            data['entity_id_to_index_map'] = entity_id_to_index_map
1067 1068
        return data

1069
    def trans_poly_to_bbox(self, poly):
littletomatodonkey's avatar
littletomatodonkey 已提交
1070 1071 1072 1073
        x1 = int(np.min([p[0] for p in poly]))
        x2 = int(np.max([p[0] for p in poly]))
        y1 = int(np.min([p[1] for p in poly]))
        y2 = int(np.max([p[1] for p in poly]))
1074
        return [x1, y1, x2, y2]
文幕地方's avatar
文幕地方 已提交
1075

1076
    def _load_ocr_info(self, data):
文幕地方's avatar
文幕地方 已提交
1077 1078 1079 1080 1081
        if self.infer_mode:
            ocr_result = self.ocr_engine.ocr(data['image'], cls=False)
            ocr_info = []
            for res in ocr_result:
                ocr_info.append({
1082 1083 1084
                    "transcription": res[1][0],
                    "bbox": self.trans_poly_to_bbox(res[0]),
                    "points": res[0],
文幕地方's avatar
文幕地方 已提交
1085 1086 1087 1088 1089 1090
                })
            return ocr_info
        else:
            info = data['label']
            # read text info
            info_dict = json.loads(info)
1091
            return info_dict
文幕地方's avatar
文幕地方 已提交
1092

1093 1094 1095 1096 1097 1098 1099 1100
    def _smooth_box(self, bboxes, height, width):
        bboxes = np.array(bboxes)
        bboxes[:, 0] = bboxes[:, 0] * 1000 / width
        bboxes[:, 2] = bboxes[:, 2] * 1000 / width
        bboxes[:, 1] = bboxes[:, 1] * 1000 / height
        bboxes[:, 3] = bboxes[:, 3] * 1000 / height
        bboxes = bboxes.astype("int64").tolist()
        return bboxes
文幕地方's avatar
文幕地方 已提交
1101 1102 1103

    def _parse_label(self, label, encode_res):
        gt_label = []
1104
        if label.lower() in ["other", "others", "ignore"]:
文幕地方's avatar
文幕地方 已提交
1105 1106 1107 1108 1109 1110
            gt_label.extend([0] * len(encode_res["input_ids"]))
        else:
            gt_label.append(self.label2id_map[("b-" + label).upper()])
            gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
                            (len(encode_res["input_ids"]) - 1))
        return gt_label
A
andyjpaddle 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140


class MultiLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        super(MultiLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

        self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)
        self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)

    def __call__(self, data):
        data_ctc = copy.deepcopy(data)
        data_sar = copy.deepcopy(data)
        data_out = dict()
        data_out['img_path'] = data.get('img_path', None)
        data_out['image'] = data['image']
        ctc = self.ctc_encode.__call__(data_ctc)
        sar = self.sar_encode.__call__(data_sar)
        if ctc is None or sar is None:
            return None
        data_out['label_ctc'] = ctc['label']
        data_out['label_sar'] = sar['label']
        data_out['length'] = ctc['length']
        return data_out
xuyang2233's avatar
add pr  
xuyang2233 已提交
1141 1142


1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
class NRTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):

        super(NRTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        text.insert(0, 2)
        text.append(3)
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
        return dict_character


class ViTSTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 ignore_index=0,
                 **kwargs):

        super(ViTSTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
        self.ignore_index = ignore_index

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
        data['length'] = np.array(len(text))
        text.insert(0, self.ignore_index)
        text.append(1)
        text = text + [self.ignore_index] * (self.max_text_len + 2 - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['<s>', '</s>'] + dict_character
        return dict_character


class ABINetLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 ignore_index=100,
                 **kwargs):

        super(ABINetLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
        self.ignore_index = ignore_index

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
        data['length'] = np.array(len(text))
        text.append(0)
        text = text + [self.ignore_index] * (self.max_text_len + 1 - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['</s>'] + dict_character
        return dict_character
xuyang2233's avatar
xuyang2233 已提交
1237

文幕地方's avatar
文幕地方 已提交
1238

1239
class SPINLabelEncode(AttnLabelEncode):
xuyang2233's avatar
add pr  
xuyang2233 已提交
1240 1241 1242 1243 1244 1245 1246 1247
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 lower=True,
                 **kwargs):
1248
        super(SPINLabelEncode, self).__init__(
xuyang2233's avatar
add pr  
xuyang2233 已提交
1249 1250
            max_text_length, character_dict_path, use_space_char)
        self.lower = lower
文幕地方's avatar
文幕地方 已提交
1251

xuyang2233's avatar
add pr  
xuyang2233 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    def add_special_char(self, dict_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + [self.end_str] + dict_character
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
        target = [0] + text + [1]
        padded_text = [0 for _ in range(self.max_text_len + 2)]

        padded_text[:len(target)] = target
        data['label'] = np.array(padded_text)
文幕地方's avatar
文幕地方 已提交
1271
        return data
A
andyjpaddle 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335


class VLLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 lower=True,
                 **kwargs):
        super(VLLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char, lower)
        self.character = self.character[10:] + self.character[
            1:10] + [self.character[0]]
        self.dict = {}
        for i, char in enumerate(self.character):
            self.dict[char] = i

    def __call__(self, data):
        text = data['label']  # original string
        # generate occluded text
        len_str = len(text)
        if len_str <= 0:
            return None
        change_num = 1
        order = list(range(len_str))
        change_id = sample(order, change_num)[0]
        label_sub = text[change_id]
        if change_id == (len_str - 1):
            label_res = text[:change_id]
        elif change_id == 0:
            label_res = text[1:]
        else:
            label_res = text[:change_id] + text[change_id + 1:]

        data['label_res'] = label_res  # remaining string
        data['label_sub'] = label_sub  # occluded character
        data['label_id'] = change_id  # character index
        # encode label
        text = self.encode(text)
        if text is None:
            return None
        text = [i + 1 for i in text]
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        label_res = self.encode(label_res)
        label_sub = self.encode(label_sub)
        if label_res is None:
            label_res = []
        else:
            label_res = [i + 1 for i in label_res]
        if label_sub is None:
            label_sub = []
        else:
            label_sub = [i + 1 for i in label_sub]
        data['length_res'] = np.array(len(label_res))
        data['length_sub'] = np.array(len(label_sub))
        label_res = label_res + [0] * (self.max_text_len - len(label_res))
        label_sub = label_sub + [0] * (self.max_text_len - len(label_sub))
        data['label_res'] = np.array(label_res)
        data['label_sub'] = np.array(label_sub)
        return data