rec_att_head.py 7.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np


class AttentionHead(nn.Layer):
    def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
        super(AttentionHead, self).__init__()
        self.input_size = in_channels
        self.hidden_size = hidden_size
        self.num_classes = out_channels

        self.attention_cell = AttentionGRUCell(
            in_channels, hidden_size, out_channels, use_gru=False)
        self.generator = nn.Linear(hidden_size, out_channels)

    def _char_to_onehot(self, input_char, onehot_dim):
        input_ont_hot = F.one_hot(input_char, onehot_dim)
        return input_ont_hot

    def forward(self, inputs, targets=None, batch_max_length=25):
W
WenmuZhou 已提交
41
        batch_size = paddle.shape(inputs)[0]
L
LDOUBLEV 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
        num_steps = batch_max_length

        hidden = paddle.zeros((batch_size, self.hidden_size))
        output_hiddens = []

        if targets is not None:
            for i in range(num_steps):
                char_onehots = self._char_to_onehot(
                    targets[:, i], onehot_dim=self.num_classes)
                (outputs, hidden), alpha = self.attention_cell(hidden, inputs,
                                                               char_onehots)
                output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
            output = paddle.concat(output_hiddens, axis=1)
            probs = self.generator(output)
        else:
            targets = paddle.zeros(shape=[batch_size], dtype="int32")
            probs = None
W
WenmuZhou 已提交
59 60 61
            char_onehots = None
            outputs = None
            alpha = None
L
LDOUBLEV 已提交
62 63 64 65 66 67 68

            for i in range(num_steps):
                char_onehots = self._char_to_onehot(
                    targets, onehot_dim=self.num_classes)
                (outputs, hidden), alpha = self.attention_cell(hidden, inputs,
                                                               char_onehots)
                probs_step = self.generator(outputs)
L
LDOUBLEV 已提交
69 70 71 72
                if probs is None:
                    probs = paddle.unsqueeze(probs_step, axis=1)
                else:
                    probs = paddle.concat(
L
LDOUBLEV 已提交
73 74 75 76
                        [probs, paddle.unsqueeze(
                            probs_step, axis=1)], axis=1)
                next_input = probs_step.argmax(axis=1)
                targets = next_input
T
tink2123 已提交
77
        if not self.training:
T
tink2123 已提交
78
            probs = paddle.nn.functional.softmax(probs, axis=2)
L
LDOUBLEV 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        return probs


class AttentionGRUCell(nn.Layer):
    def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
        super(AttentionGRUCell, self).__init__()
        self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
        self.h2h = nn.Linear(hidden_size, hidden_size)
        self.score = nn.Linear(hidden_size, 1, bias_attr=False)

        self.rnn = nn.GRUCell(
            input_size=input_size + num_embeddings, hidden_size=hidden_size)

        self.hidden_size = hidden_size

    def forward(self, prev_hidden, batch_H, char_onehots):

        batch_H_proj = self.i2h(batch_H)
        prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden), axis=1)

        res = paddle.add(batch_H_proj, prev_hidden_proj)
        res = paddle.tanh(res)
        e = self.score(res)

        alpha = F.softmax(e, axis=1)
        alpha = paddle.transpose(alpha, [0, 2, 1])
        context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
        concat_context = paddle.concat([context, char_onehots], 1)

        cur_hidden = self.rnn(concat_context, prev_hidden)

        return cur_hidden, alpha


class AttentionLSTM(nn.Layer):
    def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
        super(AttentionLSTM, self).__init__()
        self.input_size = in_channels
        self.hidden_size = hidden_size
        self.num_classes = out_channels

        self.attention_cell = AttentionLSTMCell(
            in_channels, hidden_size, out_channels, use_gru=False)
        self.generator = nn.Linear(hidden_size, out_channels)

    def _char_to_onehot(self, input_char, onehot_dim):
        input_ont_hot = F.one_hot(input_char, onehot_dim)
        return input_ont_hot

    def forward(self, inputs, targets=None, batch_max_length=25):
        batch_size = inputs.shape[0]
        num_steps = batch_max_length

        hidden = (paddle.zeros((batch_size, self.hidden_size)), paddle.zeros(
            (batch_size, self.hidden_size)))
        output_hiddens = []

        if targets is not None:
            for i in range(num_steps):
                # one-hot vectors for a i-th char
                char_onehots = self._char_to_onehot(
                    targets[:, i], onehot_dim=self.num_classes)
                hidden, alpha = self.attention_cell(hidden, inputs,
                                                    char_onehots)

                hidden = (hidden[1][0], hidden[1][1])
                output_hiddens.append(paddle.unsqueeze(hidden[0], axis=1))
            output = paddle.concat(output_hiddens, axis=1)
            probs = self.generator(output)

        else:
            targets = paddle.zeros(shape=[batch_size], dtype="int32")
            probs = None
152 153
            char_onehots = None
            alpha = None
L
LDOUBLEV 已提交
154 155 156 157 158 159 160 161

            for i in range(num_steps):
                char_onehots = self._char_to_onehot(
                    targets, onehot_dim=self.num_classes)
                hidden, alpha = self.attention_cell(hidden, inputs,
                                                    char_onehots)
                probs_step = self.generator(hidden[0])
                hidden = (hidden[1][0], hidden[1][1])
L
LDOUBLEV 已提交
162 163 164 165
                if probs is None:
                    probs = paddle.unsqueeze(probs_step, axis=1)
                else:
                    probs = paddle.concat(
L
LDOUBLEV 已提交
166 167 168 169 170 171
                        [probs, paddle.unsqueeze(
                            probs_step, axis=1)], axis=1)

                next_input = probs_step.argmax(axis=1)

                targets = next_input
z37757's avatar
z37757 已提交
172 173
        if not self.training:
            probs = paddle.nn.functional.softmax(probs, axis=2)
L
LDOUBLEV 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        return probs


class AttentionLSTMCell(nn.Layer):
    def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
        super(AttentionLSTMCell, self).__init__()
        self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
        self.h2h = nn.Linear(hidden_size, hidden_size)
        self.score = nn.Linear(hidden_size, 1, bias_attr=False)
        if not use_gru:
            self.rnn = nn.LSTMCell(
                input_size=input_size + num_embeddings, hidden_size=hidden_size)
        else:
            self.rnn = nn.GRUCell(
                input_size=input_size + num_embeddings, hidden_size=hidden_size)

        self.hidden_size = hidden_size

    def forward(self, prev_hidden, batch_H, char_onehots):
        batch_H_proj = self.i2h(batch_H)
        prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1)
        res = paddle.add(batch_H_proj, prev_hidden_proj)
        res = paddle.tanh(res)
        e = self.score(res)

        alpha = F.softmax(e, axis=1)
        alpha = paddle.transpose(alpha, [0, 2, 1])
        context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
        concat_context = paddle.concat([context, char_onehots], 1)
        cur_hidden = self.rnn(concat_context, prev_hidden)

        return cur_hidden, alpha