README.md 11.0 KB
Newer Older
1
English | [简体中文](README_ch.md)
2

3 4
## Introduction
PaddleOCR aims to create rich, leading, and practical OCR tools that help users train better models and apply them into practice.
D
dyning 已提交
5

6
**Recent updates**
D
dyning 已提交
7
- 2020.9.22 Update the PP-OCR technical article, https://arxiv.org/abs/2009.09941
M
MissPenguin 已提交
8
- 2020.9.19 Update the ultra lightweight compressed ppocr_mobile_slim series models, the overall model size is 3.5M (see [PP-OCR Pipline](#PP-OCR-Pipline)), suitable for mobile deployment. [Model Downloads](#Supported-Chinese-model-list)
9
- 2020.9.17 Update the ultra lightweight ppocr_mobile series and general ppocr_server series Chinese and English ocr models, which are comparable to commercial effects. [Model Downloads](#Supported-Chinese-model-list)
M
MissPenguin 已提交
10
- 2020.9.17 update [English recognition model](./doc/doc_en/models_list_en.md#english-recognition-model) and [Multilingual recognition model](doc/doc_en/models_list_en.md#english-recognition-model), `German`, `French`, `Japanese` and `Korean` have been supported. Models for more languages will continue to be updated.
11 12 13
- 2020.8.24 Support the use of PaddleOCR through whl package installation,pelease refer  [PaddleOCR Package](./doc/doc_en/whl_en.md)
- 2020.8.21 Update the replay and PPT of the live lesson at Bilibili on August 18, lesson 2, easy to learn and use OCR tool spree. [Get Address](https://aistudio.baidu.com/aistudio/education/group/info/1519)
- [more](./doc/doc_en/update_en.md)
D
dyning 已提交
14

15 16 17 18 19 20 21 22 23 24
## Features
- PPOCR series of high-quality pre-trained models, comparable to commercial effects
    - Ultra lightweight ppocr_mobile series models: detection (2.6M) + direction classifier (0.9M) + recognition (4.6M) = 8.1M
    - General ppocr_server series models: detection (47.2M) + direction classifier (0.9M) + recognition (107M) = 155.1M
    - Ultra lightweight compression ppocr_mobile_slim series models: detection (1.4M) + direction classifier (0.5M) + recognition (1.6M) = 3.5M
- Support Chinese, English, and digit recognition, vertical text recognition, and long text recognition
- Support multi-language recognition: Korean, Japanese, German, French
- Support user-defined training, provides rich predictive inference deployment solutions
- Support PIP installation, easy to use
- Support Linux, Windows, MacOS and other systems
G
grasswolfs 已提交
25

26
## Visualization
L
LDOUBLEV 已提交
27

G
grasswolfs 已提交
28
<div align="center">
G
grasswolfs 已提交
29
    <img src="doc/imgs_results/1101.jpg" width="800">
D
Daniel Yang 已提交
30
    <img src="doc/imgs_results/1103.jpg" width="800">
G
grasswolfs 已提交
31
</div>
D
dyning 已提交
32

D
Daniel Yang 已提交
33
The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).
34 35

## Quick Experience
D
dyning 已提交
36

37
You can also quickly experience the ultra-lightweight OCR : [Online Experience](https://www.paddlepaddle.org.cn/hub/scene/ocr)
G
grasswolfs 已提交
38

39
Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Android systems): [Sign in to the website to obtain the QR code for  installing the App](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)
D
dyning 已提交
40

41
 Also, you can scan the QR code below to install the App (**Android support only**)
D
dyning 已提交
42 43 44 45 46

<div align="center">
<img src="./doc/ocr-android-easyedge.png"  width = "200" height = "200" />
</div>

47 48 49 50 51 52
- [**OCR Quick Start**](./doc/doc_en/quickstart_en.md)

<a name="Supported-Chinese-model-list"></a>

## PP-OCR 1.1 series model list(Update on Sep 17)

L
LDOUBLEV 已提交
53 54 55 56
| Model introduction                                           | Model name                   | Recommended scene | Detection model                                              | Direction classifier                                         | Recognition model                                            |
| ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| Chinese and English ultra-lightweight OCR model (8.1M)       | ch_ppocr_mobile_v1.1_xx      | Mobile & server   | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_pre.tar) |  
| Chinese and English general OCR model (155.1M)               | ch_ppocr_server_v1.1_xx      | Server            | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar) |  
L
LDOUBLEV 已提交
57
| Chinese and English ultra-lightweight compressed OCR model (3.5M) | ch_ppocr_mobile_slim_v1.1_xx | Mobile            | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb) | [inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb) |    [inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb) |
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

For more model downloads (including multiple languages), please refer to [PP-OCR v1.1 series model downloads](./doc/doc_en/models_list_en.md)


## Tutorials
- [Installation](./doc/doc_en/installation_en.md)
- [Quick Start](./doc/doc_en/quickstart_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
- Algorithm introduction
    - [Text Detection Algorithm](./doc/doc_en/algorithm_overview_en.md)
    - [Text Recognition Algorithm](./doc/doc_en/algorithm_overview_en.md)
    - [PP-OCR Pipline](#PP-OCR-Pipline)
- Model training/evaluation
    - [Text Detection](./doc/doc_en/detection_en.md)
    - [Text Recognition](./doc/doc_en/recognition_en.md)
T
tink2123 已提交
73
    - [Direction Classification](./doc/doc_en/angle_class_en.md)
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    - [Yml Configuration](./doc/doc_en/config_en.md)
- Inference and Deployment
    - [Quick inference based on pip](./doc/doc_en/whl_en.md)
    - [Python Inference](./doc/doc_en/inference_en.md)
    - [C++ Inference](./deploy/cpp_infer/readme_en.md)
    - [Serving](./deploy/hubserving/readme_en.md)
    - [Mobile](./deploy/lite/readme_en.md)
    - [Model Quantization](./deploy/slim/quantization/README_en.md)
    - [Model Compression](./deploy/slim/prune/README_en.md)
    - [Benchmark](./doc/doc_en/benchmark_en.md)
- Datasets
    - [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
    - [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
    - [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
    - [Data Annotation Tools](./doc/doc_en/data_annotation_en.md)
    - [Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
- [Visualization](#Visualization)
D
dyning 已提交
91
- [FAQ](./doc/doc_en/FAQ_en.md)
92 93 94 95 96 97 98
- [Community](#Community)
- [References](./doc/doc_en/reference_en.md)
- [License](#LICENSE)
- [Contribution](#CONTRIBUTION)

<a name="PP-OCR-Pipline"></a>

G
grasswolfs 已提交
99
## PP-OCR Pipline
100

G
grasswolfs 已提交
101 102 103 104
<div align="center">
    <img src="./doc/ppocr_framework.png" width="800">
</div>

D
dyning 已提交
105 106 107
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner and PACT quantization is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim). 


D
dyning 已提交
108

109
## Visualization [more](./doc/doc_en/visualization_en.md)
M
MissPenguin 已提交
110
- Chinese OCR model
G
grasswolfs 已提交
111
<div align="center">
D
Daniel Yang 已提交
112
    <img src="./doc/imgs_results/1102.jpg" width="800">
G
grasswolfs 已提交
113
    <img src="./doc/imgs_results/1104.jpg" width="800">
G
grasswolfs 已提交
114
    <img src="./doc/imgs_results/1106.jpg" width="800">
G
grasswolfs 已提交
115
    <img src="./doc/imgs_results/1105.jpg" width="800">
M
MissPenguin 已提交
116 117 118 119 120 121 122 123 124
</div>

- English OCR model
<div align="center">
    <img src="./doc/imgs_results/img_12.jpg" width="800">
</div>

- Multilingual OCR model
<div align="center">
G
grasswolfs 已提交
125 126
    <img src="./doc/imgs_results/1110.jpg" width="800">
    <img src="./doc/imgs_results/1112.jpg" width="800">
G
grasswolfs 已提交
127
</div>
T
tink2123 已提交
128

129 130 131
<a name="Community"></a>
## Community
Scan the QR code below with your Wechat and completing the questionnaire, you can access to offical technical exchange group.
D
dyning 已提交
132

D
dyning 已提交
133
<div align="center">
D
dyning 已提交
134
<img src="./doc/joinus.PNG"  width = "200" height = "200" />
D
dyning 已提交
135
</div>
M
MissPenguin 已提交
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
<a name="LICENSE"></a>
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>

<a name="CONTRIBUTION"></a>
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.

- Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) and [Karl Horky](https://github.com/karlhorky) for contributing and revising the English documentation.
- Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.
- Many thanks to [lyl120117](https://github.com/lyl120117) for contributing the code for printing the network structure.
- Thanks [xiangyubo](https://github.com/xiangyubo) for contributing the handwritten Chinese OCR datasets.
- Thanks [authorfu](https://github.com/authorfu) for contributing Android demo  and [xiadeye](https://github.com/xiadeye) contributing iOS demo, respectively.
- Thanks [BeyondYourself](https://github.com/BeyondYourself) for contributing many great suggestions and simplifying part of the code style.
- Thanks [tangmq](https://gitee.com/tangmq) for contributing Dockerized deployment services to PaddleOCR and supporting the rapid release of callable Restful API services.