program.py 22.9 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27 28 29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
30 31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
33
from ppocr.utils.logging import get_logger
34
from ppocr.utils.loggers import VDLLogger, WandbLogger, Loggers
L
LDOUBLEV 已提交
35
from ppocr.utils import profiler
D
dyning 已提交
36
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
37

D
dyning 已提交
38

L
LDOUBLEV 已提交
39 40 41 42 43 44 45
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
46 47 48 49 50
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
51 52
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
53
        )
L
LDOUBLEV 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
82 83
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
84 85


86
def merge_config(config, opts):
L
LDOUBLEV 已提交
87 88 89 90 91 92
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
93
    for key, value in opts.items():
L
LDOUBLEV 已提交
94
        if "." not in key:
95 96
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
97
            else:
98
                config[key] = value
L
LDOUBLEV 已提交
99 100
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
101
            assert (
102
                sub_keys[0] in config
103 104
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
105 106
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
107 108 109 110 111
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
112
    return config
L
LDOUBLEV 已提交
113 114


X
xiaoting 已提交
115
def check_device(use_gpu, use_xpu=False):
L
LDOUBLEV 已提交
116 117 118 119
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
X
xiaoting 已提交
120 121 122 123
    err = "Config {} cannot be set as true while your paddle " \
          "is not compiled with {} ! \nPlease try: \n" \
          "\t1. Install paddlepaddle to run model on {} \n" \
          "\t2. Set {} as false in config file to run " \
L
LDOUBLEV 已提交
124 125 126
          "model on CPU"

    try:
X
xiaoting 已提交
127 128
        if use_gpu and use_xpu:
            print("use_xpu and use_gpu can not both be ture.")
W
WenmuZhou 已提交
129
        if use_gpu and not paddle.is_compiled_with_cuda():
X
xiaoting 已提交
130 131 132 133
            print(err.format("use_gpu", "cuda", "gpu", "use_gpu"))
            sys.exit(1)
        if use_xpu and not paddle.device.is_compiled_with_xpu():
            print(err.format("use_xpu", "xpu", "xpu", "use_xpu"))
L
LDOUBLEV 已提交
134 135 136 137 138
            sys.exit(1)
    except Exception as e:
        pass


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass


W
WenmuZhou 已提交
158
def train(config,
D
dyning 已提交
159 160 161
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
162 163 164 165 166 167 168 169
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
170
          log_writer=None,
S
stephon 已提交
171
          scaler=None):
W
WenmuZhou 已提交
172 173
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
174
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
175 176 177 178
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
179
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
180

D
dyning 已提交
181
    global_step = 0
182 183
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
184 185 186 187
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
188 189
        if len(valid_dataloader) == 0:
            logger.info(
190 191
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
192 193
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
194
        logger.info(
195 196
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
197
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
198 199
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
200 201
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
202 203 204 205
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
206
    model_average = False
W
WenmuZhou 已提交
207 208
    model.train()

T
tink2123 已提交
209
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
add vl  
andyjpaddle 已提交
210
    extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR", "VisionLAN"]
A
andyjpaddle 已提交
211
    extra_input = False
A
andyjpaddle 已提交
212
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
213 214 215
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
216 217
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
218
    try:
L
fix bug  
LDOUBLEV 已提交
219
        model_type = config['Architecture']['model_type']
220
    except:
L
fix bug  
LDOUBLEV 已提交
221
        model_type = None
A
andyjpaddle 已提交
222

T
tink2123 已提交
223
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
224

225 226 227 228
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
229 230
    train_reader_cost = 0.0
    train_batch_cost = 0.0
231
    reader_start = time.time()
232
    eta_meter = AverageMeter()
233 234 235

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
236

T
tink2123 已提交
237
    for epoch in range(start_epoch, epoch_num + 1):
238 239 240 241 242
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
243
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
244
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
245
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
246
            if idx >= max_iter:
W
WenmuZhou 已提交
247 248 249
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
250
            if use_srn:
T
tink2123 已提交
251
                model_average = True
S
stephon 已提交
252 253 254 255 256
            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
A
andyjpaddle 已提交
257 258
                    elif model_type in ["kie", 'vqa']:
                        preds = model(batch)
S
stephon 已提交
259 260
                    else:
                        preds = model(images)
T
tink2123 已提交
261
            else:
S
stephon 已提交
262 263
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
264
                elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
265
                    preds = model(batch)
S
stephon 已提交
266 267
                else:
                    preds = model(images)
W
WenmuZhou 已提交
268 269
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
S
stephon 已提交
270 271 272 273 274 275 276 277

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
W
WenmuZhou 已提交
278
            optimizer.clear_grad()
W
WenmuZhou 已提交
279

280 281
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
文幕地方's avatar
文幕地方 已提交
282
                if model_type in ['kie']:
283
                    eval_class(preds, batch)
文幕地方's avatar
文幕地方 已提交
284 285 286
                elif model_type in ['table']:
                    post_result = post_process_class(preds, batch)
                    eval_class(post_result, batch)
287
                else:
A
andyjpaddle 已提交
288 289 290 291
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
A
add vl  
andyjpaddle 已提交
292 293 294
                    elif config['Loss']['name'] in ['VLLoss']:
                        post_result = post_process_class(preds, batch[1],
                                                         batch[-1])
A
andyjpaddle 已提交
295 296
                    else:
                        post_result = post_process_class(preds, batch[1])
297 298 299 300
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

301 302 303
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
304
            global_step += 1
文幕地方's avatar
文幕地方 已提交
305
            total_samples += len(images)
W
WenmuZhou 已提交
306

D
dyning 已提交
307 308
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
309 310 311 312 313 314

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

315
            if log_writer is not None and dist.get_rank() == 0:
A
add vl  
andyjpaddle 已提交
316 317
                log_writer.log_metrics(
                    metrics=train_stats.get(), prefix="TRAIN", step=global_step)
W
WenmuZhou 已提交
318

319 320 321
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
322
                logs = train_stats.log()
L
LDOUBLEV 已提交
323

324 325 326 327 328
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
L
LDOUBLEV 已提交
329
                       'ips: {:.5f} samples/s, eta: {}'.format(
330 331 332 333 334
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
335
                logger.info(strs)
336

文幕地方's avatar
文幕地方 已提交
337
                total_samples = 0
338 339
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
340 341
            # eval
            if global_step > start_eval_step and \
342 343
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
344 345 346 347 348 349 350
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
351 352 353 354 355
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
356
                    model_type,
T
tink2123 已提交
357
                    extra_input=extra_input)
L
LDOUBLEV 已提交
358 359 360
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
361 362

                # logger metric
363
                if log_writer is not None:
A
add vl  
andyjpaddle 已提交
364 365
                    log_writer.log_metrics(
                        metrics=cur_metric, prefix="EVAL", step=global_step)
366

L
LDOUBLEV 已提交
367
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
368
                        main_indicator]:
L
LDOUBLEV 已提交
369
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
370 371 372 373 374 375
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
376
                        config,
W
WenmuZhou 已提交
377 378 379
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
380 381
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
382
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
383 384 385 386
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
387
                if log_writer is not None:
A
add vl  
andyjpaddle 已提交
388 389 390 391 392 393 394 395 396 397 398 399
                    log_writer.log_metrics(
                        metrics={
                            "best_{}".format(main_indicator):
                            best_model_dict[main_indicator]
                        },
                        prefix="EVAL",
                        step=global_step)

                    log_writer.log_model(
                        is_best=True,
                        prefix="best_accuracy",
                        metadata=best_model_dict)
400

文幕地方's avatar
文幕地方 已提交
401
            reader_start = time.time()
W
WenmuZhou 已提交
402 403 404 405 406 407
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
408
                config,
W
WenmuZhou 已提交
409 410 411
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
412 413
                epoch=epoch,
                global_step=global_step)
414

415 416
            if log_writer is not None:
                log_writer.log_model(is_best=False, prefix="latest")
417

W
WenmuZhou 已提交
418 419 420 421 422 423
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
424
                config,
W
WenmuZhou 已提交
425 426 427
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
428 429
                epoch=epoch,
                global_step=global_step)
430
            if log_writer is not None:
A
add vl  
andyjpaddle 已提交
431 432
                log_writer.log_model(
                    is_best=False, prefix='iter_epoch_{}'.format(epoch))
433

L
LDOUBLEV 已提交
434
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
435 436
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
437 438
    if dist.get_rank() == 0 and log_writer is not None:
        log_writer.close()
L
LDOUBLEV 已提交
439 440 441
    return


M
refine  
MissPenguin 已提交
442 443 444 445
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
446
         model_type=None,
T
tink2123 已提交
447
         extra_input=False):
W
WenmuZhou 已提交
448 449 450 451
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
452 453 454 455 456
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
457 458
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
W
WenmuZhou 已提交
459
        for idx, batch in enumerate(valid_dataloader):
460
            if idx >= max_iter:
W
WenmuZhou 已提交
461
                break
W
fix bug  
WenmuZhou 已提交
462
            images = batch[0]
W
WenmuZhou 已提交
463
            start = time.time()
T
tink2123 已提交
464
            if model_type == 'table' or extra_input:
M
refine  
MissPenguin 已提交
465
                preds = model(images, data=batch[1:])
466
            elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
467
                preds = model(batch)
X
xiaoting 已提交
468
            else:
L
LDOUBLEV 已提交
469
                preds = model(images)
470 471 472 473 474 475
            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
476 477 478
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
文幕地方's avatar
文幕地方 已提交
479
            if model_type in ['kie']:
480
                eval_class(preds, batch_numpy)
文幕地方's avatar
文幕地方 已提交
481
            elif model_type in ['table', 'vqa']:
482 483
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
M
MissPenguin 已提交
484
            else:
485 486
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
487

W
fix bug  
WenmuZhou 已提交
488
            pbar.update(1)
W
WenmuZhou 已提交
489
            total_frame += len(images)
L
LDOUBLEV 已提交
490 491
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
492

W
fix bug  
WenmuZhou 已提交
493
    pbar.close()
W
WenmuZhou 已提交
494
    model.train()
L
LDOUBLEV 已提交
495 496
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
497

T
tink2123 已提交
498

B
Bin Lu 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


548
def preprocess(is_train=False):
L
licx 已提交
549
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
550
    profiler_options = FLAGS.profiler_options
L
licx 已提交
551
    config = load_config(FLAGS.config)
552
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
553
    profile_dic = {"profiler_options": FLAGS.profiler_options}
554
    config = merge_config(config, profile_dic)
L
licx 已提交
555

W
WenmuZhou 已提交
556 557 558 559 560 561 562 563 564 565
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
566
    logger = get_logger(log_file=log_file)
L
licx 已提交
567 568 569

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
X
xiaoting 已提交
570
    use_xpu = config['Global'].get('use_xpu', False)
L
licx 已提交
571

572 573 574 575 576 577
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

W
WenmuZhou 已提交
578 579
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
580
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
581
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
W
wangjingyeye 已提交
582
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'LayoutLMv2', 'PREN', 'FCE',
A
add vl  
andyjpaddle 已提交
583
        'SVTR', 'ViTSTR', 'ABINet', 'DB++', 'TableMaster', 'VisionLAN'
W
WenmuZhou 已提交
584
    ]
L
licx 已提交
585

586
    if use_xpu:
X
xiaoting 已提交
587 588 589 590 591 592
        device = 'xpu:{0}'.format(os.getenv('FLAGS_selected_xpus', 0))
    else:
        device = 'gpu:{}'.format(dist.ParallelEnv()
                                 .dev_id) if use_gpu else 'cpu'
    check_device(use_gpu, use_xpu)

W
WenmuZhou 已提交
593
    device = paddle.set_device(device)
D
dyning 已提交
594

D
dyning 已提交
595
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
596

597 598
    loggers = []

599
    if 'use_visualdl' in config['Global'] and config['Global']['use_visualdl']:
L
fix bug  
LDOUBLEV 已提交
600
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
601
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
A
add vl  
andyjpaddle 已提交
602
        log_writer = VDLLogger(vdl_writer_path)
603
        loggers.append(log_writer)
A
add vl  
andyjpaddle 已提交
604 605
    if ('use_wandb' in config['Global'] and
            config['Global']['use_wandb']) or 'wandb' in config:
606 607 608 609 610 611 612 613
        save_dir = config['Global']['save_model_dir']
        wandb_writer_path = "{}/wandb".format(save_dir)
        if "wandb" in config:
            wandb_params = config['wandb']
        else:
            wandb_params = dict()
        wandb_params.update({'save_dir': save_model_dir})
        log_writer = WandbLogger(**wandb_params, config=config)
614
        loggers.append(log_writer)
D
dyning 已提交
615
    else:
616
        log_writer = None
D
dyning 已提交
617
    print_dict(config, logger)
618 619 620 621 622 623

    if loggers:
        log_writer = Loggers(loggers)
    else:
        log_writer = None

D
dyning 已提交
624 625
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
626
    return config, device, logger, log_writer