export_model.py 4.8 KB
Newer Older
B
baiyfbupt 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
    os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

import program
Y
yukavio 已提交
42
import paddle
B
baiyfbupt 已提交
43 44 45 46 47 48 49 50 51 52 53 54
from paddle import fluid
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.save_load import init_model, load_params
from ppocr.utils.character import CharacterOps
from ppocr.utils.utility import create_module
from ppocr.data.reader_main import reader_main

from paddleslim.quant import quant_aware, convert
from paddle.fluid.layer_helper import LayerHelper
from eval_utils.eval_det_utils import eval_det_run
from eval_utils.eval_rec_utils import eval_rec_run
B
baiyfbupt 已提交
55
from eval_utils.eval_cls_utils import eval_cls_run
B
baiyfbupt 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79


def main():
    # 1. quantization configs
    quant_config = {
        # weight quantize type, default is 'channel_wise_abs_max'
        'weight_quantize_type': 'channel_wise_abs_max',
        # activation quantize type, default is 'moving_average_abs_max'
        'activation_quantize_type': 'moving_average_abs_max',
        # weight quantize bit num, default is 8
        'weight_bits': 8,
        # activation quantize bit num, default is 8
        'activation_bits': 8,
        # ops of name_scope in not_quant_pattern list, will not be quantized
        'not_quant_pattern': ['skip_quant'],
        # ops of type in quantize_op_types, will be quantized
        'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'],
        # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
        'dtype': 'int8',
        # window size for 'range_abs_max' quantization. defaulf is 10000
        'window_size': 10000,
        # The decay coefficient of moving average, default is 0.9
        'moving_rate': 0.9,
    }
Y
yukavio 已提交
80 81 82 83 84 85
    # Run code with static graph mode.
    try:
        paddle.enable_static()
    except:
        pass

B
baiyfbupt 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    startup_prog, eval_program, place, config, alg_type = program.preprocess()

    feeded_var_names, target_vars, fetches_var_name = program.build_export(
        config, eval_program, startup_prog)

    eval_program = eval_program.clone(for_test=True)
    exe = fluid.Executor(place)
    exe.run(startup_prog)

    eval_program = quant_aware(
        eval_program, place, quant_config, scope=None, for_test=True)

    init_model(config, eval_program, exe)

    # 2. Convert the program before save inference program
    #    The dtype of eval_program's weights is float32, but in int8 range.

    eval_program = convert(eval_program, place, quant_config, scope=None)

    eval_fetch_name_list = fetches_var_name
    eval_fetch_varname_list = [v.name for v in target_vars]
    eval_reader = reader_main(config=config, mode="eval")
    quant_info_dict = {'program':eval_program,\
        'reader':eval_reader,\
        'fetch_name_list':eval_fetch_name_list,\
        'fetch_varname_list':eval_fetch_varname_list}

    if alg_type == 'det':
        final_metrics = eval_det_run(exe, config, quant_info_dict, "eval")
B
baiyfbupt 已提交
115 116
    elif alg_type == 'cls':
        final_metrics = eval_cls_run(exe, quant_info_dict)
B
baiyfbupt 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    else:
        final_metrics = eval_rec_run(exe, config, quant_info_dict, "eval")
    print(final_metrics)

    # 3. Save inference model
    model_path = "./quant_model"
    if not os.path.isdir(model_path):
        os.makedirs(model_path)

    fluid.io.save_inference_model(
        dirname=model_path,
        feeded_var_names=feeded_var_names,
        target_vars=target_vars,
        executor=exe,
        main_program=eval_program,
        model_filename=model_path + '/model',
        params_filename=model_path + '/params')
    print("model saved as {}".format(model_path))


if __name__ == '__main__':
    main()