#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning on sequence labeling task """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import numpy as np import os import time import paddle import paddle.fluid as fluid import paddlehub as hub # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.") parser.add_argument("--batch_size", type=int, default=1, help="Total examples' number in batch for training.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for fine-tuning, input should be True or False") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': # loading Paddlehub ERNIE pretrained model module = hub.Module(name="ernie_tiny") inputs, outputs, program = module.context(max_seq_len=args.max_seq_len) # Download dataset and get its label list and label num # If you just want labels information, you can omit its tokenizer parameter to avoid preprocessing the train set. dataset = hub.dataset.MSRA_NER() num_classes = dataset.num_labels label_list = dataset.get_labels() # Construct transfer learning network # Use "sequence_output" for token-level output. sequence_output = outputs["sequence_output"] # Setup RunConfig for PaddleHub Fine-tune API config = hub.RunConfig( use_data_parallel=False, use_cuda=args.use_gpu, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) # Define a sequence labeling fine-tune task by PaddleHub's API # if add crf, the network use crf as decoder seq_label_task = hub.SequenceLabelTask( feature=sequence_output, max_seq_len=args.max_seq_len, num_classes=num_classes, config=config, add_crf=False) # Data to be predicted text_a = [ "我们变而以书会友,以书结缘,把欧美、港台流行的食品类图谱、画册、工具书汇集一堂。", "为了跟踪国际最新食品工艺、流行趋势,大量搜集海外专业书刊资料是提高技艺的捷径。", "其中线装古籍逾千册;民国出版物几百种;珍本四册、稀见本四百余册,出版时间跨越三百余年。", "有的古木交柯,春机荣欣,从诗人句中得之,而入画中,观之令人心驰。", "不过重在晋趣,略增明人气息,妙在集古有道、不露痕迹罢了。", ] # Add 0x02 between characters to match the format of training data, # otherwise the length of prediction results will not match the input string # if the input string contains non-Chinese characters. formatted_text_a = list(map("\002".join, text_a)) # Use the appropriate tokenizer to preprocess the data # For ernie_tiny, it use BertTokenizer too. tokenizer = hub.BertTokenizer(vocab_file=module.get_vocab_path()) encoded_data = [ tokenizer.encode(text=text, max_seq_len=args.max_seq_len) for text in formatted_text_a ] print(seq_label_task.predict(data=encoded_data, label_list=label_list))