```shell $ hub install roberta-wwm-ext-large==2.0.1 ```


更多详情请参考[RoBERTa论文](https://arxiv.org/abs/1907.11692)、[Chinese-BERT-wwm技术报告](https://arxiv.org/abs/1906.08101) ## API ```python def __init__( task=None, load_checkpoint=None, label_map=None, num_classes=2, **kwargs, ) ``` 创建Module对象(动态图组网版本)。 **参数** * `task`: 任务名称,可为`seq-cls`(文本分类任务,原来的`sequence_classification`在未来会被弃用)或`token-cls`(序列标注任务)。 * `load_checkpoint`:使用PaddleHub Fine-tune api训练保存的模型参数文件路径。 * `label_map`:预测时的类别映射表。 * `num_classes`:分类任务的类别数,如果指定了`label_map`,此参数可不传,默认2分类。 * `**kwargs`:用户额外指定的关键字字典类型的参数。 ```python def predict( data, max_seq_len=128, batch_size=1, use_gpu=False ) ``` **参数** * `data`: 待预测数据,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。每个样例文本数量(1个或者2个)需和训练时保持一致。 * `max_seq_len`:模型处理文本的最大长度 * `batch_size`:模型批处理大小 * `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。 **返回** * `results`:list类型,不同任务类型的返回结果如下 * 文本分类:列表里包含每个句子的预测标签,格式为\[label\_1, label\_2, …,\] * 序列标注:列表里包含每个句子每个token的预测标签,格式为\[\[token\_1, token\_2, …,\], \[token\_1, token\_2, …,\], …,\] ```python def get_embedding( data, use_gpu=False ) ``` 用于获取输入文本的句子粒度特征与字粒度特征 **参数** * `data`:输入文本列表,格式为\[\[sample\_a\_text\_a, sample\_a\_text\_b\], \[sample\_b\_text\_a, sample\_b\_text\_b\],…,\],其中每个元素都是一个样例,每个样例可以包含text\_a与text\_b。 * `use_gpu`:是否使用gpu,默认为False。对于GPU用户,建议开启use_gpu。 **返回** * `results`:list类型,格式为\[\[sample\_a\_pooled\_feature, sample\_a\_seq\_feature\], \[sample\_b\_pooled\_feature, sample\_b\_seq\_feature\],…,\],其中每个元素都是对应样例的特征输出,每个样例都有句子粒度特征pooled\_feature与字粒度特征seq\_feature。 **代码示例** ```python import paddlehub as hub data = [ ['这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般'], ['怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片'], ['作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。'], ] label_map = {0: 'negative', 1: 'positive'} model = hub.Module( name='roberta-wwm-ext-large', version='2.0.1', task='seq-cls', load_checkpoint='/path/to/parameters', label_map=label_map) results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False) for idx, text in enumerate(data): print('Data: {} \t Lable: {}'.format(text, results[idx])) ``` 详情可参考PaddleHub示例: - [文本分类](https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/text_classification) - [序列标注](https://github.com/PaddlePaddle/PaddleHub/tree/release/v2.0.0-beta/demo/sequence_labeling) ## 服务部署 PaddleHub Serving可以部署一个在线获取预训练词向量。 ### Step1: 启动PaddleHub Serving 运行启动命令: ```shell $ hub serving start -m roberta-wwm-ext-large ``` 这样就完成了一个获取预训练词向量服务化API的部署,默认端口号为8866。 **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。 ### Step2: 发送预测请求 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果 ```python import requests import json # 指定用于获取embedding的文本[[text_1], [text_2], ... ]} text = [["今天是个好日子"], ["天气预报说今天要下雨"]] # 以key的方式指定text传入预测方法的时的参数,此例中为"data" # 对应本地部署,则为module.get_embedding(data=text) data = {"data": text} # 发送post请求,content-type类型应指定json方式,url中的ip地址需改为对应机器的ip url = "http://10.12.121.132:8866/predict/roberta-wwm-ext-large" # 指定post请求的headers为application/json方式 headers = {"Content-Type": "application/json"} r = requests.post(url=url, headers=headers, data=json.dumps(data)) print(r.json()) ``` ## 查看代码 https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/paddlenlp/transformers/roberta ## 依赖 paddlepaddle >= 2.0.0 paddlehub >= 2.0.0 ## 更新历史 * 1.0.0 初始发布 * 2.0.0 全面升级动态图,接口有所变化。 * 2.0.1 任务名称调整,增加序列标注任务`token-cls`