import paddle import paddlehub as hub import paddlehub.vision.transforms as T from paddlehub.finetune.trainer import Trainer from paddlehub.datasets import MiniCOCO if __name__ == "__main__": model = hub.Module(name='msgnet') transform = T.Compose([T.Resize( (256, 256), interpolation='LINEAR'), T.CenterCrop(crop_size=256)], T.SetType(datatype='float32')) styledata = MiniCOCO(transform) optimizer = paddle.optimizer.Adam(learning_rate=0.0001, parameters=model.parameters()) trainer = Trainer(model, optimizer, checkpoint_dir='img_style_transfer_ckpt') trainer.train(styledata, epochs=5, batch_size=16, eval_dataset=styledata, log_interval=1, save_interval=1)