# face_parse
|模型名称|face_parse|
| :--- | :---: |
|类别|图像 - 人脸解析|
|网络|BiSeNet|
|数据集|-|
|是否支持Fine-tuning|否|
|模型大小|77MB|
|最新更新日期|2021-12-07|
|数据指标|-|
## 一、模型基本信息
- ### 应用效果展示
- 样例结果示例:
输入图像
输出图像
- ### 模型介绍
- 人脸解析是语义图像分割的一种特殊情况,人脸解析是计算人脸图像中不同语义成分(如头发、嘴唇、鼻子、眼睛等)的像素级标签映射。给定一个输入的人脸图像,人脸解析将为每个语义成分分配一个像素级标签。
## 二、安装
- ### 1、环境依赖
- ppgan
- dlib
- ### 2、安装
- ```shell
$ hub install face_parse
```
- 如您安装时遇到问题,可参考:[零基础windows安装](../../../../docs/docs_ch/get_start/windows_quickstart.md)
| [零基础Linux安装](../../../../docs/docs_ch/get_start/linux_quickstart.md) | [零基础MacOS安装](../../../../docs/docs_ch/get_start/mac_quickstart.md)
## 三、模型API预测
- ### 1、命令行预测
- ```shell
# Read from a file
$ hub run face_parse --input_path "/PATH/TO/IMAGE"
```
- 通过命令行方式实现人脸解析模型的调用,更多请见 [PaddleHub命令行指令](../../../../docs/docs_ch/tutorial/cmd_usage.rst)
- ### 2、预测代码示例
- ```python
import paddlehub as hub
module = hub.Module(name="face_parse")
input_path = ["/PATH/TO/IMAGE"]
# Read from a file
module.style_transfer(paths=input_path, output_dir='./transfer_result/', use_gpu=True)
```
- ### 3、API
- ```python
style_transfer(images=None, paths=None, output_dir='./transfer_result/', use_gpu=False, visualization=True):
```
- 人脸解析转换API。
- **参数**
- images (list\[numpy.ndarray\]): 图片数据,ndarray.shape 为 \[H, W, C\];
- paths (list\[str\]): 图片的路径;
- output\_dir (str): 结果保存的路径;
- use\_gpu (bool): 是否使用 GPU;
- visualization(bool): 是否保存结果到本地文件夹
## 四、服务部署
- PaddleHub Serving可以部署一个在线人脸解析转换服务。
- ### 第一步:启动PaddleHub Serving
- 运行启动命令:
- ```shell
$ hub serving start -m face_parse
```
- 这样就完成了一个人脸解析转换的在线服务API的部署,默认端口号为8866。
- **NOTE:** 如使用GPU预测,则需要在启动服务之前,请设置CUDA\_VISIBLE\_DEVICES环境变量,否则不用设置。
- ### 第二步:发送预测请求
- 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
- ```python
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/face_parse"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
## 五、更新历史
* 1.0.0
初始发布
- ```shell
$ hub install face_parse==1.0.0
```