# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union import os from paddlehub.env import DATA_HOME from paddlehub.utils.download import download_data from paddlehub.datasets.base_nlp_dataset import TextMatchingDataset from paddlehub.text.bert_tokenizer import BertTokenizer from paddlehub.text.tokenizer import CustomTokenizer @download_data(url="https://bj.bcebos.com/paddlehub-dataset/lcqmc.tar.gz") class LCQMC(TextMatchingDataset): label_list = ['0', '1'] def __init__( self, tokenizer: Union[BertTokenizer, CustomTokenizer], max_seq_len: int = 128, mode: str = 'train', ): base_path = os.path.join(DATA_HOME, "lcqmc") if mode == 'train': data_file = 'train.tsv' elif mode == 'test': data_file = 'test.tsv' else: data_file = 'dev.tsv' super().__init__( base_path=base_path, tokenizer=tokenizer, max_seq_len=max_seq_len, mode=mode, data_file=data_file, label_file=None, label_list=self.label_list, is_file_with_header=True, ) if __name__ == "__main__": import paddlehub as hub model = hub.Module(name='ernie_tiny') tokenizer = model.get_tokenizer() ds = LCQMC(tokenizer=tokenizer, max_seq_len=128, mode='dev')