import cv2 import numpy as np from sklearn.neighbors import KernelDensity __all__ = [ 'build_transformation_matrix', 'update_transformation_matrix', 'estimate_partial_transform', 'removeOutliers', 'guidedfilter' ] def build_transformation_matrix(transform): """Convert transform list to transformation matrix :param transform: transform list as [dx, dy, da] :return: transform matrix as 2d (2, 3) numpy array """ transform_matrix = np.zeros((2, 3)) transform_matrix[0, 0] = np.cos(transform[2]) transform_matrix[0, 1] = -np.sin(transform[2]) transform_matrix[1, 0] = np.sin(transform[2]) transform_matrix[1, 1] = np.cos(transform[2]) transform_matrix[0, 2] = transform[0] transform_matrix[1, 2] = transform[1] return transform_matrix def update_transformation_matrix(M, m): # extend M and m to 3x3 by adding an [0,0,1] to their 3rd row M_ = np.concatenate([M, np.zeros([1, 3])], axis=0) M_[-1, -1] = 1 m_ = np.concatenate([m, np.zeros([1, 3])], axis=0) m_[-1, -1] = 1 M_new = np.matmul(m_, M_) return M_new[0:2, :] def estimate_partial_transform(matched_keypoints): """Wrapper of cv2.estimateRigidTransform for convenience in vidstab process :param matched_keypoints: output of match_keypoints util function; tuple of (cur_matched_kp, prev_matched_kp) :return: transform as list of [dx, dy, da] """ prev_matched_kp, cur_matched_kp = matched_keypoints transform = cv2.estimateAffinePartial2D(np.array(prev_matched_kp), np.array(cur_matched_kp))[0] if transform is not None: # translation x dx = transform[0, 2] # translation y dy = transform[1, 2] # rotation da = np.arctan2(transform[1, 0], transform[0, 0]) else: dx = dy = da = 0 return [dx, dy, da] def removeOutliers(prev_pts, curr_pts): d = np.sum((prev_pts - curr_pts)**2, axis=-1)**0.5 d_ = np.array(d).reshape(-1, 1) kde = KernelDensity(kernel='gaussian', bandwidth=0.5).fit(d_) density = np.exp(kde.score_samples(d_)) prev_pts = prev_pts[np.where((density >= 0.1))] curr_pts = curr_pts[np.where((density >= 0.1))] return prev_pts, curr_pts def boxfilter(img, r): (rows, cols) = img.shape imDst = np.zeros_like(img) imCum = np.cumsum(img, 0) imDst[0:r + 1, :] = imCum[r:2 * r + 1, :] imDst[r + 1:rows - r, :] = imCum[2 * r + 1:rows, :] - imCum[0:rows - 2 * r - 1, :] imDst[rows - r:rows, :] = np.tile(imCum[rows - 1, :], [r, 1]) - imCum[rows - 2 * r - 1:rows - r - 1, :] imCum = np.cumsum(imDst, 1) imDst[:, 0:r + 1] = imCum[:, r:2 * r + 1] imDst[:, r + 1:cols - r] = imCum[:, 2 * r + 1:cols] - imCum[:, 0:cols - 2 * r - 1] imDst[:, cols - r:cols] = np.tile(imCum[:, cols - 1], [r, 1]).T - imCum[:, cols - 2 * r - 1:cols - r - 1] return imDst def guidedfilter(img, p, r, eps): (rows, cols) = img.shape N = boxfilter(np.ones([rows, cols]), r) meanI = boxfilter(img, r) / N meanP = boxfilter(p, r) / N meanIp = boxfilter(img * p, r) / N covIp = meanIp - meanI * meanP meanII = boxfilter(img * img, r) / N varI = meanII - meanI * meanI a = covIp / (varI + eps) b = meanP - a * meanI meanA = boxfilter(a, r) / N meanB = boxfilter(b, r) / N q = meanA * img + meanB return q