# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import base64 from functools import reduce from typing import Union import cv2 import numpy as np from paddlehub.module.module import moduleinfo, serving import solov2.processor as P import solov2.data_feed as D class Detector(object): """ Args: min_subgraph_size (int): number of tensorRT graphs. use_gpu (bool): whether use gpu threshold (float): threshold to reserve the result for output. """ def __init__(self, min_subgraph_size: int = 60, use_gpu=False, threshold: float = 0.5): model_dir = os.path.join(self.directory, 'solov2_r50_fpn_1x') self.predictor = D.load_predictor(model_dir, min_subgraph_size=min_subgraph_size, use_gpu=use_gpu) self.compose = [ P.Resize(max_size=1333), P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), P.Permute(), P.PadStride(stride=32) ] def transform(self, im: Union[str, np.ndarray]): im, im_info = P.preprocess(im, self.compose) inputs = D.create_inputs(im, im_info) return inputs, im_info def postprocess(self, np_boxes: np.ndarray, np_masks: np.ndarray, im_info: dict, threshold: float = 0.5): # postprocess output of predictor results = {} expect_boxes = (np_boxes[:, 1] > threshold) & (np_boxes[:, 0] > -1) np_boxes = np_boxes[expect_boxes, :] for box in np_boxes: print('class_id:{:d}, confidence:{:.4f},' 'left_top:[{:.2f},{:.2f}],' ' right_bottom:[{:.2f},{:.2f}]'.format(int(box[0]), box[1], box[2], box[3], box[4], box[5])) results['boxes'] = np_boxes if np_masks is not None: np_masks = np_masks[expect_boxes, :, :, :] results['masks'] = np_masks return results def predict(self, image: Union[str, np.ndarray], threshold: float = 0.5): ''' Args: image (str/np.ndarray): path of image/ np.ndarray read by cv2 threshold (float): threshold of predicted box' score Returns: results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, matix element:[class, score, x_min, y_min, x_max, y_max] MaskRCNN's results include 'masks': np.ndarray: shape:[N, class_num, mask_resolution, mask_resolution] ''' inputs, im_info = self.transform(image) np_boxes, np_masks = None, None input_names = self.predictor.get_input_names() for i in range(len(input_names)): input_tensor = self.predictor.get_input_tensor(input_names[i]) input_tensor.copy_from_cpu(inputs[input_names[i]]) self.predictor.zero_copy_run() output_names = self.predictor.get_output_names() boxes_tensor = self.predictor.get_output_tensor(output_names[0]) np_boxes = boxes_tensor.copy_to_cpu() # do not perform postprocess in benchmark mode results = [] if reduce(lambda x, y: x * y, np_boxes.shape) < 6: print('[WARNNING] No object detected.') results = {'boxes': np.array([])} else: results = self.postprocess(np_boxes, np_masks, im_info, threshold=threshold) return results @moduleinfo( name="solov2", type="CV/instance_segmentation", author="paddlepaddle", author_email="", summary="solov2 is a detection model, this module is trained with COCO dataset.", version="1.0.0") class DetectorSOLOv2(Detector): """ Args: use_gpu (bool): whether use gpu threshold (float): threshold to reserve the result for output. """ def __init__(self, use_gpu: bool = False, threshold: float = 0.5): super(DetectorSOLOv2, self).__init__(use_gpu=use_gpu, threshold=threshold) def predict(self, image: Union[str, np.ndarray], threshold: float = 0.5, visualization: bool = False, save_dir: str = 'solov2_result'): ''' Args: image (str/np.ndarray): path of image/ np.ndarray read by cv2 threshold (float): threshold of predicted box' score visualization (bool): Whether to save visualization result. save_dir (str): save path. ''' inputs, im_info = self.transform(image) np_label, np_score, np_segms = None, None, None input_names = self.predictor.get_input_names() for i in range(len(input_names)): input_tensor = self.predictor.get_input_tensor(input_names[i]) input_tensor.copy_from_cpu(inputs[input_names[i]]) self.predictor.zero_copy_run() output_names = self.predictor.get_output_names() np_label = self.predictor.get_output_tensor(output_names[0]).copy_to_cpu() np_score = self.predictor.get_output_tensor(output_names[1]).copy_to_cpu() np_segms = self.predictor.get_output_tensor(output_names[2]).copy_to_cpu() output = dict(segm=np_segms, label=np_label, score=np_score) if visualization: if not os.path.exists(save_dir): os.makedirs(save_dir) image = D.visualize_box_mask(im=image, results=output) name = str(time.time()) + '.png' save_path = os.path.join(save_dir, name) image.save(save_path) return output @serving def serving_method(self, images: list, **kwargs): """ Run as a service. """ images_decode = D.base64_to_cv2(images[0]) results = self.predict(image=images_decode, **kwargs) final = {} final['segm'] = base64.b64encode(results['segm']).decode('utf8') final['label'] = base64.b64encode(results['label']).decode('utf8') final['score'] = base64.b64encode(results['score']).decode('utf8') return final