# -*- coding:utf-8 -*- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import base64 import math import os import time import cv2 import numpy as np import paddle.fluid as fluid import paddle.inference as paddle_infer from paddle.fluid.core import AnalysisConfig from paddle.fluid.core import create_paddle_predictor from paddle.fluid.core import PaddleTensor from PIL import Image import paddlehub as hub from paddlehub.common.logger import logger from paddlehub.module.module import moduleinfo from paddlehub.module.module import runnable from paddlehub.module.module import serving def base64_to_cv2(b64str): data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data @moduleinfo( name="ch_pp-ocrv3_det", version="1.0.0", summary= "The module aims to detect chinese text position in the image, which is based on differentiable_binarization algorithm.", author="paddle-dev", author_email="paddle-dev@baidu.com", type="cv/text_recognition") class ChPPOCRv3Det(hub.Module): def _initialize(self, enable_mkldnn=False): """ initialize with the necessary elements """ self.pretrained_model_path = os.path.join(self.directory, 'inference_model', 'ppocrv3_det') self.enable_mkldnn = enable_mkldnn self._set_config() def check_requirements(self): try: import shapely, pyclipper except: raise ImportError( 'This module requires the shapely, pyclipper tools. The running environment does not meet the requirements. Please install the two packages.' ) def _set_config(self): """ predictor config setting """ model_file_path = self.pretrained_model_path + '.pdmodel' params_file_path = self.pretrained_model_path + '.pdiparams' config = paddle_infer.Config(model_file_path, params_file_path) try: _places = os.environ["CUDA_VISIBLE_DEVICES"] int(_places[0]) use_gpu = True except: use_gpu = False if use_gpu: config.enable_use_gpu(8000, 0) else: config.disable_gpu() config.set_cpu_math_library_num_threads(6) if self.enable_mkldnn: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() config.disable_glog_info() # use zero copy config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass") config.switch_use_feed_fetch_ops(False) self.predictor = paddle_infer.create_predictor(config) input_names = self.predictor.get_input_names() self.input_tensor = self.predictor.get_input_handle(input_names[0]) output_names = self.predictor.get_output_names() self.output_tensors = [] for output_name in output_names: output_tensor = self.predictor.get_output_handle(output_name) self.output_tensors.append(output_tensor) def read_images(self, paths=[]): images = [] for img_path in paths: assert os.path.isfile(img_path), "The {} isn't a valid file.".format(img_path) img = cv2.imread(img_path) if img is None: logger.info("error in loading image:{}".format(img_path)) continue images.append(img) return images def order_points_clockwise(self, pts): rect = np.zeros((4, 2), dtype="float32") s = pts.sum(axis=1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts, axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def clip_det_res(self, points, img_height, img_width): for pno in range(points.shape[0]): points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1)) points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1)) return points def filter_tag_det_res(self, dt_boxes, image_shape): img_height, img_width = image_shape[0:2] dt_boxes_new = [] for box in dt_boxes: box = self.order_points_clockwise(box) box = self.clip_det_res(box, img_height, img_width) rect_width = int(np.linalg.norm(box[0] - box[1])) rect_height = int(np.linalg.norm(box[0] - box[3])) if rect_width <= 3 or rect_height <= 3: continue dt_boxes_new.append(box) dt_boxes = np.array(dt_boxes_new) return dt_boxes def filter_tag_det_res_only_clip(self, dt_boxes, image_shape): img_height, img_width = image_shape[0:2] dt_boxes_new = [] for box in dt_boxes: box = self.clip_det_res(box, img_height, img_width) dt_boxes_new.append(box) dt_boxes = np.array(dt_boxes_new) return dt_boxes def detect_text(self, images=[], paths=[], use_gpu=False, output_dir='detection_result', visualization=False, box_thresh=0.5, det_db_unclip_ratio=1.5): """ Get the text box in the predicted images. Args: images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths paths (list[str]): The paths of images. If paths not images use_gpu (bool): Whether to use gpu. Default false. output_dir (str): The directory to store output images. visualization (bool): Whether to save image or not. box_thresh(float): the threshold of the detected text box's confidence det_db_unclip_ratio(float): unclip ratio for post processing in DB detection. Returns: res (list): The result of text detection box and save path of images. """ self.check_requirements() from .processor import DBProcessTest, DBPostProcess, draw_boxes, get_image_ext if use_gpu: try: _places = os.environ["CUDA_VISIBLE_DEVICES"] int(_places[0]) except: raise RuntimeError( "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id." ) if images != [] and isinstance(images, list) and paths == []: predicted_data = images elif images == [] and isinstance(paths, list) and paths != []: predicted_data = self.read_images(paths) else: raise TypeError("The input data is inconsistent with expectations.") assert predicted_data != [], "There is not any image to be predicted. Please check the input data." preprocessor = DBProcessTest(params={'max_side_len': 960}) postprocessor = DBPostProcess(params={ 'thresh': 0.3, 'box_thresh': 0.6, 'max_candidates': 1000, 'unclip_ratio': det_db_unclip_ratio }) all_imgs = [] all_ratios = [] all_results = [] for original_image in predicted_data: ori_im = original_image.copy() im, ratio_list = preprocessor(original_image) res = {'save_path': ''} if im is None: res['data'] = [] else: im = im.copy() self.input_tensor.copy_from_cpu(im) self.predictor.run() outputs = [] for output_tensor in self.output_tensors: output = output_tensor.copy_to_cpu() outputs.append(output) outs_dict = {} outs_dict['maps'] = outputs[0] dt_boxes_list = postprocessor(outs_dict, [ratio_list]) dt_boxes = dt_boxes_list[0] boxes = self.filter_tag_det_res(dt_boxes_list[0], original_image.shape) res['data'] = boxes.astype(np.int).tolist() all_imgs.append(im) all_ratios.append(ratio_list) if visualization: img = Image.fromarray(cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)) draw_img = draw_boxes(img, boxes) draw_img = np.array(draw_img) if not os.path.exists(output_dir): os.makedirs(output_dir) ext = get_image_ext(original_image) saved_name = 'ndarray_{}{}'.format(time.time(), ext) cv2.imwrite(os.path.join(output_dir, saved_name), draw_img[:, :, ::-1]) res['save_path'] = os.path.join(output_dir, saved_name) all_results.append(res) return all_results @serving def serving_method(self, images, **kwargs): """ Run as a service. """ images_decode = [base64_to_cv2(image) for image in images] results = self.detect_text(images=images_decode, **kwargs) return results @runnable def run_cmd(self, argvs): """ Run as a command """ self.parser = argparse.ArgumentParser(description="Run the %s module." % self.name, prog='hub run %s' % self.name, usage='%(prog)s', add_help=True) self.arg_input_group = self.parser.add_argument_group(title="Input options", description="Input data. Required") self.arg_config_group = self.parser.add_argument_group( title="Config options", description="Run configuration for controlling module behavior, not required.") self.add_module_config_arg() self.add_module_input_arg() args = self.parser.parse_args(argvs) results = self.detect_text(paths=[args.input_path], use_gpu=args.use_gpu, output_dir=args.output_dir, det_db_unclip_ratio=args.det_db_unclip_ratio, visualization=args.visualization) return results def add_module_config_arg(self): """ Add the command config options """ self.arg_config_group.add_argument('--use_gpu', type=ast.literal_eval, default=False, help="whether use GPU or not") self.arg_config_group.add_argument('--output_dir', type=str, default='detection_result', help="The directory to save output images.") self.arg_config_group.add_argument('--visualization', type=ast.literal_eval, default=False, help="whether to save output as images.") self.arg_config_group.add_argument('--det_db_unclip_ratio', type=float, default=1.5, help="unclip ratio for post processing in DB detection.") def add_module_input_arg(self): """ Add the command input options """ self.arg_input_group.add_argument('--input_path', type=str, default=None, help="diretory to image")