# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddlehub as hub if __name__ == '__main__': model = hub.Module(name='ernie_tiny', version='2.0.0', task='sequence_classification') train_dataset = hub.datasets.ChnSentiCorp( tokenizer=model.get_tokenizer(tokenize_chinese_chars=True), max_seq_len=128, mode='train') dev_dataset = hub.datasets.ChnSentiCorp( tokenizer=model.get_tokenizer(tokenize_chinese_chars=True), max_seq_len=128, mode='dev') test_dataset = hub.datasets.ChnSentiCorp( tokenizer=model.get_tokenizer(tokenize_chinese_chars=True), max_seq_len=128, mode='test') optimizer = paddle.optimizer.AdamW(learning_rate=5e-5, parameters=model.parameters()) trainer = hub.Trainer(model, optimizer, checkpoint_dir='test_ernie_text_cls', use_gpu=True) trainer.train(train_dataset, epochs=3, batch_size=32, eval_dataset=dev_dataset, save_interval=1) trainer.evaluate(test_dataset, batch_size=32)