#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning on sequence labeling task """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import numpy as np import os import time import paddle import paddle.fluid as fluid import paddlehub as hub from paddlehub.finetune.evaluate import chunk_eval, calculate_f1 # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.") parser.add_argument("--batch_size", type=int, default=1, help="Total examples' number in batch for training.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for finetuning, input should be True or False") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': # loading Paddlehub ERNIE pretrained model module = hub.Module(name="ernie") inputs, outputs, program = module.context(max_seq_len=args.max_seq_len) # Sentence labeling dataset reader dataset = hub.dataset.MSRA_NER() reader = hub.reader.SequenceLabelReader( dataset=dataset, vocab_path=module.get_vocab_path(), max_seq_len=args.max_seq_len) inv_label_map = {val: key for key, val in reader.label_map.items()} place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # Construct transfer learning network # Use "sequence_output" for token-level output. sequence_output = outputs["sequence_output"] # Setup feed list for data feeder # Must feed all the tensor of ERNIE's module need feed_list = [ inputs["input_ids"].name, inputs["position_ids"].name, inputs["segment_ids"].name, inputs["input_mask"].name, ] # Setup runing config for PaddleHub Finetune API config = hub.RunConfig( use_cuda=args.use_gpu, batch_size=args.batch_size, enable_memory_optim=False, checkpoint_dir=args.checkpoint_dir, strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) # Define a sequence labeling finetune task by PaddleHub's API seq_label_task = hub.SequenceLabelTask( data_reader=reader, feature=sequence_output, feed_list=feed_list, max_seq_len=args.max_seq_len, num_classes=dataset.num_labels, config=config) # test data data = [ ["我们变而以书会友,以书结缘,把欧美、港台流行的食品类图谱、画册、工具书汇集一堂。"], ["为了跟踪国际最新食品工艺、流行趋势,大量搜集海外专业书刊资料是提高技艺的捷径。"], ["其中线装古籍逾千册;民国出版物几百种;珍本四册、稀见本四百余册,出版时间跨越三百余年。"], ["有的古木交柯,春机荣欣,从诗人句中得之,而入画中,观之令人心驰。"], ["不过重在晋趣,略增明人气息,妙在集古有道、不露痕迹罢了。"], ] results = seq_label_task.predict(data=data) for num_batch, batch_results in enumerate(results): infers = batch_results[0].reshape([-1]).astype(np.int32).tolist() np_lens = batch_results[1] for index, np_len in enumerate(np_lens): labels = infers[index * args.max_seq_len:(index + 1) * args.max_seq_len] label_str = "" count = 0 for label_val in labels: label_str += inv_label_map[label_val] count += 1 if count == np_len: break # Drop the label results of CLS and SEP Token print( "%s\tpredict=%s" % (data[num_batch * args.batch_size + index][0], label_str[1:-1]))