#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning on classification task """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import numpy as np import os import time import paddle import paddle.fluid as fluid import paddlehub as hub # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--batch_size", type=int, default=1, help="Total examples' number in batch for training.") parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for finetuning, input should be True or False") parser.add_argument("--use_pyreader", type=ast.literal_eval, default=False, help="Whether use pyreader to feed data.") parser.add_argument("--dataset", type=str, default="chnsenticorp", help="The choice of dataset") parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': dataset = None metrics_choices = [] # Download dataset and use ClassifyReader to read dataset if args.dataset.lower() == "chnsenticorp": dataset = hub.dataset.ChnSentiCorp() module = hub.Module(name="ernie") metrics_choices = ["acc"] elif args.dataset.lower() == "nlpcc_dbqa": dataset = hub.dataset.NLPCC_DBQA() module = hub.Module(name="ernie") metrics_choices = ["acc"] elif args.dataset.lower() == "lcqmc": dataset = hub.dataset.LCQMC() module = hub.Module(name="ernie") metrics_choices = ["acc"] elif args.dataset.lower() == "mrpc": dataset = hub.dataset.GLUE("MRPC") module = hub.Module(name="ernie_v2_eng_base") metrics_choices = ["f1", "acc"] # The first metric will be choose to eval. Ref: task.py:799 elif args.dataset.lower() == "qqp": dataset = hub.dataset.GLUE("QQP") module = hub.Module(name="ernie_v2_eng_base") metrics_choices = ["f1", "acc"] elif args.dataset.lower() == "sst-2": dataset = hub.dataset.GLUE("SST-2") module = hub.Module(name="ernie_v2_eng_base") metrics_choices = ["acc"] elif args.dataset.lower() == "cola": dataset = hub.dataset.GLUE("CoLA") module = hub.Module(name="ernie_v2_eng_base") metrics_choices = ["matthews", "acc"] elif args.dataset.lower() == "qnli": dataset = hub.dataset.GLUE("QNLI") module = hub.Module(name="ernie_v2_eng_base") metrics_choices = ["acc"] elif args.dataset.lower() == "rte": dataset = hub.dataset.GLUE("RTE") module = hub.Module(name="ernie_v2_eng_base") metrics_choices = ["acc"] elif args.dataset.lower() == "mnli" or args.dataset.lower() == "mnli_m": dataset = hub.dataset.GLUE("MNLI_m") module = hub.Module(name="ernie_v2_eng_base") metrics_choices = ["acc"] elif args.dataset.lower() == "mnli_mm": dataset = hub.dataset.GLUE("MNLI_mm") module = hub.Module(name="ernie_v2_eng_base") metrics_choices = ["acc"] elif args.dataset.lower().startswith("xnli"): dataset = hub.dataset.XNLI(language=args.dataset.lower()[-2:]) module = hub.Module(name="bert_multi_cased_L-12_H-768_A-12") metrics_choices = ["acc"] else: raise ValueError("%s dataset is not defined" % args.dataset) support_metrics = ["acc", "f1", "matthews"] for metric in metrics_choices: if metric not in support_metrics: raise ValueError("\"%s\" metric is not defined" % metric) inputs, outputs, program = module.context( trainable=True, max_seq_len=args.max_seq_len) reader = hub.reader.ClassifyReader( dataset=dataset, vocab_path=module.get_vocab_path(), max_seq_len=args.max_seq_len) # Construct transfer learning network # Use "pooled_output" for classification tasks on an entire sentence. # Use "sequence_output" for token-level output. pooled_output = outputs["pooled_output"] # Setup feed list for data feeder # Must feed all the tensor of ERNIE's module need feed_list = [ inputs["input_ids"].name, inputs["position_ids"].name, inputs["segment_ids"].name, inputs["input_mask"].name, ] # Setup runing config for PaddleHub Finetune API config = hub.RunConfig( use_data_parallel=False, use_pyreader=args.use_pyreader, use_cuda=args.use_gpu, batch_size=args.batch_size, enable_memory_optim=False, checkpoint_dir=args.checkpoint_dir, strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) # Define a classfication finetune task by PaddleHub's API cls_task = hub.TextClassifierTask( data_reader=reader, feature=pooled_output, feed_list=feed_list, num_classes=dataset.num_labels, config=config, metrics_choices=metrics_choices) # Data to be prdicted data = [[d.text_a, d.text_b] for d in dataset.get_dev_examples()[:3]] index = 0 run_states = cls_task.predict(data=data) results = [run_state.run_results for run_state in run_states] for batch_result in results: # get predict index batch_result = np.argmax(batch_result, axis=2)[0] for result in batch_result: print("%s\tpredict=%s" % (data[index][0], result)) index += 1