import functools import paddle import paddle.nn as nn import paddle.nn.functional as F class Registry(object): """ The registry that provides name -> object mapping, to support third-party users' custom modules. To create a registry (inside segmentron): .. code-block:: python BACKBONE_REGISTRY = Registry('BACKBONE') To register an object: .. code-block:: python @BACKBONE_REGISTRY.register() class MyBackbone(): ... Or: .. code-block:: python BACKBONE_REGISTRY.register(MyBackbone) """ def __init__(self, name): """ Args: name (str): the name of this registry """ self._name = name self._obj_map = {} def _do_register(self, name, obj): assert ( name not in self._obj_map ), "An object named '{}' was already registered in '{}' registry!".format(name, self._name) self._obj_map[name] = obj def register(self, obj=None, name=None): """ Register the given object under the the name `obj.__name__`. Can be used as either a decorator or not. See docstring of this class for usage. """ if obj is None: # used as a decorator def deco(func_or_class, name=name): if name is None: name = func_or_class.__name__ self._do_register(name, func_or_class) return func_or_class return deco # used as a function call if name is None: name = obj.__name__ self._do_register(name, obj) def get(self, name): ret = self._obj_map.get(name) if ret is None: raise KeyError("No object named '{}' found in '{}' registry!".format(name, self._name)) return ret class ResidualDenseBlock_5C(nn.Layer): def __init__(self, nf=64, gc=32, bias=True): super(ResidualDenseBlock_5C, self).__init__() # gc: growth channel, i.e. intermediate channels self.conv1 = nn.Conv2D(nf, gc, 3, 1, 1, bias_attr=bias) self.conv2 = nn.Conv2D(nf + gc, gc, 3, 1, 1, bias_attr=bias) self.conv3 = nn.Conv2D(nf + 2 * gc, gc, 3, 1, 1, bias_attr=bias) self.conv4 = nn.Conv2D(nf + 3 * gc, gc, 3, 1, 1, bias_attr=bias) self.conv5 = nn.Conv2D(nf + 4 * gc, nf, 3, 1, 1, bias_attr=bias) self.lrelu = nn.LeakyReLU(negative_slope=0.2) def forward(self, x): x1 = self.lrelu(self.conv1(x)) x2 = self.lrelu(self.conv2(paddle.concat((x, x1), 1))) x3 = self.lrelu(self.conv3(paddle.concat((x, x1, x2), 1))) x4 = self.lrelu(self.conv4(paddle.concat((x, x1, x2, x3), 1))) x5 = self.conv5(paddle.concat((x, x1, x2, x3, x4), 1)) return x5 * 0.2 + x class RRDB(nn.Layer): '''Residual in Residual Dense Block''' def __init__(self, nf, gc=32): super(RRDB, self).__init__() self.RDB1 = ResidualDenseBlock_5C(nf, gc) self.RDB2 = ResidualDenseBlock_5C(nf, gc) self.RDB3 = ResidualDenseBlock_5C(nf, gc) def forward(self, x): out = self.RDB1(x) out = self.RDB2(out) out = self.RDB3(out) return out * 0.2 + x def make_layer(block, n_layers): layers = [] for _ in range(n_layers): layers.append(block()) return nn.Sequential(*layers) GENERATORS = Registry("GENERATOR") @GENERATORS.register() class RRDBNet(nn.Layer): def __init__(self, in_nc, out_nc, nf, nb, gc=32): super(RRDBNet, self).__init__() RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc) self.conv_first = nn.Conv2D(in_nc, nf, 3, 1, 1, bias_attr=True) self.RRDB_trunk = make_layer(RRDB_block_f, nb) self.trunk_conv = nn.Conv2D(nf, nf, 3, 1, 1, bias_attr=True) #### upsampling self.upconv1 = nn.Conv2D(nf, nf, 3, 1, 1, bias_attr=True) self.upconv2 = nn.Conv2D(nf, nf, 3, 1, 1, bias_attr=True) self.HRconv = nn.Conv2D(nf, nf, 3, 1, 1, bias_attr=True) self.conv_last = nn.Conv2D(nf, out_nc, 3, 1, 1, bias_attr=True) self.lrelu = nn.LeakyReLU(negative_slope=0.2) def forward(self, x): fea = self.conv_first(x) trunk = self.trunk_conv(self.RRDB_trunk(fea)) fea = fea + trunk fea = self.lrelu( self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest'))) fea = self.lrelu( self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest'))) out = self.conv_last(self.lrelu(self.HRconv(fea))) return out