#coding:utf-8 import paddle.fluid as fluid import paddlehub as hub # Load ERNIE pretrained model module = hub.Module(name="ernie") inputs, outputs, program = module.context(trainable=True, max_seq_len=128) # Create ClassifyReader reader = hub.reader.ClassifyReader( hub.dataset.ChnSentiCorp(), module.get_vocab_path(), max_seq_len=128) # Create Text Classification Task task = hub.create_text_cls_task(feature=outputs["pooled_output"], num_classes=2) # Configure Fine-tune strategy strategy = hub.AdamWeightDecayStrategy(learning_rate=5e-5) # Setting runing config config = hub.RunConfig( use_cuda=True, num_epoch=3, batch_size=32, strategy=strategy) feed_list = [ inputs["input_ids"].name, inputs["position_ids"].name, inputs["segment_ids"].name, inputs["input_mask"].name, task.variable("label").name ] # Start fine-tuning hub.finetune_and_eval(task, reader, feed_list, config)