# PaddleHub Transformer模型fine-tune文本分类(动态图) 在2017年之前,工业界和学术界对NLP文本处理依赖于序列模型[Recurrent Neural Network (RNN)](https://baike.baidu.com/item/%E5%BE%AA%E7%8E%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C/23199490?fromtitle=RNN&fromid=5707183&fr=aladdin). ![](http://colah.github.io/posts/2015-09-NN-Types-FP/img/RNN-general.png) 近年来随着深度学习的发展,模型参数数量飞速增长,为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集成本过高,非常困难,特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。最近的研究表明,基于大规模未标注语料库的预训练模型(Pretrained Models, PTM) 能够习得通用的语言表示,将预训练模型Fine-tune到下游任务,能够获得出色的表现。另外,预训练模型能够避免从零开始训练模型。 ![](https://ai-studio-static-online.cdn.bcebos.com/327f44ff3ed24493adca5ddc4dc24bf61eebe67c84a6492f872406f464fde91e) 本示例将展示如何使用PaddleHub Transformer模型(如 ERNIE、BERT、RoBERTa等模型)Module 以动态图方式fine-tune并完成预测任务。 ## 如何开始Fine-tune 我们以中文情感分类公开数据集ChnSentiCorp为示例数据集,可以运行下面的命令,在训练集(train.tsv)上进行模型训练,并在开发集(dev.tsv)验证。通过如下命令,即可启动训练。 ```shell # 设置使用的GPU卡号 export CUDA_VISIBLE_DEVICES=0 python train.py ``` ## 代码步骤 使用PaddleHub Fine-tune API进行Fine-tune可以分为4个步骤。 ### Step1: 选择模型 ```python import paddlehub as hub model = hub.Module(name='ernie_tiny', version='2.0.1', task='seq-cls', num_classes=2) ``` 其中,参数: * `name`:模型名称,可以选择`ernie`,`ernie_tiny`,`bert-base-cased`, `bert-base-chinese`, `roberta-wwm-ext`,`roberta-wwm-ext-large`等。 * `version`:module版本号 * `task`:fine-tune任务。此处为`seq-cls`,表示文本分类任务。 * `num_classes`:表示当前文本分类任务的类别数,根据具体使用的数据集确定,默认为2。 PaddleHub还提供BERT等模型可供选择, 当前支持文本分类任务的模型对应的加载示例如下: 模型名 | PaddleHub Module ---------------------------------- | :------: ERNIE, Chinese | `hub.Module(name='ernie')` ERNIE tiny, Chinese | `hub.Module(name='ernie_tiny')` ERNIE 2.0 Base, English | `hub.Module(name='ernie_v2_eng_base')` ERNIE 2.0 Large, English | `hub.Module(name='ernie_v2_eng_large')` BERT-Base, English Cased | `hub.Module(name='bert-base-cased')` BERT-Base, English Uncased | `hub.Module(name='bert-base-uncased')` BERT-Large, English Cased | `hub.Module(name='bert-large-cased')` BERT-Large, English Uncased | `hub.Module(name='bert-large-uncased')` BERT-Base, Multilingual Cased | `hub.Module(nane='bert-base-multilingual-cased')` BERT-Base, Multilingual Uncased | `hub.Module(nane='bert-base-multilingual-uncased')` BERT-Base, Chinese | `hub.Module(name='bert-base-chinese')` BERT-wwm, Chinese | `hub.Module(name='chinese-bert-wwm')` BERT-wwm-ext, Chinese | `hub.Module(name='chinese-bert-wwm-ext')` RoBERTa-wwm-ext, Chinese | `hub.Module(name='roberta-wwm-ext')` RoBERTa-wwm-ext-large, Chinese | `hub.Module(name='roberta-wwm-ext-large')` RBT3, Chinese | `hub.Module(name='rbt3')` RBTL3, Chinese | `hub.Module(name='rbtl3')` ELECTRA-Small, English | `hub.Module(name='electra-small')` ELECTRA-Base, English | `hub.Module(name='electra-base')` ELECTRA-Large, English | `hub.Module(name='electra-large')` ELECTRA-Base, Chinese | `hub.Module(name='chinese-electra-base')` ELECTRA-Small, Chinese | `hub.Module(name='chinese-electra-small')` 通过以上的一行代码,`model`初始化为一个适用于文本分类任务的模型,为ERNIE Tiny的预训练模型后拼接上一个全连接网络(Full Connected)。 ![](https://ai-studio-static-online.cdn.bcebos.com/f9e1bf9d56c6412d939960f2e3767c2f13b93eab30554d738b137ab2b98e328c) 以上图片来自于:https://arxiv.org/pdf/1810.04805.pdf ### Step2: 下载并加载数据集 ```python train_dataset = hub.datasets.ChnSentiCorp( tokenizer=model.get_tokenizer(), max_seq_len=128, mode='train') dev_dataset = hub.datasets.ChnSentiCorp( tokenizer=model.get_tokenizer(), max_seq_len=128, mode='dev') ``` * `tokenizer`:表示该module所需用到的tokenizer,其将对输入文本完成切词,并转化成module运行所需模型输入格式。 * `mode`:选择数据模式,可选项有 `train`, `test`, `val`, 默认为`train`。 * `max_seq_len`:ERNIE/BERT模型使用的最大序列长度,若出现显存不足,请适当调低这一参数。 预训练模型ERNIE对中文数据的处理是以字为单位,tokenizer作用为将原始输入文本转化成模型model可以接受的输入数据形式。 PaddleHub 2.0中的各种预训练模型已经内置了相应的tokenizer,可以通过`model.get_tokenizer`方法获取。 ![](https://bj.bcebos.com/paddlehub/paddlehub-img/ernie_network_1.png) ![](https://bj.bcebos.com/paddlehub/paddlehub-img/ernie_network_2.png) ### Step3: 选择优化策略和运行配置 ```python optimizer = paddle.optimizer.Adam(learning_rate=5e-5, parameters=model.parameters()) trainer = hub.Trainer(model, optimizer, checkpoint_dir='test_ernie_text_cls') trainer.train(train_dataset, epochs=3, batch_size=32, eval_dataset=dev_dataset) # 在测试集上评估当前训练模型 trainer.evaluate(test_dataset, batch_size=32) ``` #### 优化策略 Paddle2.0-rc提供了多种优化器选择,如`SGD`, `Adam`, `Adamax`等,详细参见[策略](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc/api/paddle/optimizer/optimizer/Optimizer_cn.html)。 其中`Adam`: * `learning_rate`: 全局学习率。默认为1e-3; * `parameters`: 待优化模型参数。 #### 运行配置 `Trainer` 主要控制Fine-tune的训练,包含以下可控制的参数: * `model`: 被优化模型; * `optimizer`: 优化器选择; * `use_vdl`: 是否使用vdl可视化训练过程; * `checkpoint_dir`: 保存模型参数的地址; * `compare_metrics`: 保存最优模型的衡量指标; `trainer.train` 主要控制具体的训练过程,包含以下可控制的参数: * `train_dataset`: 训练时所用的数据集; * `epochs`: 训练轮数; * `batch_size`: 训练的批大小,如果使用GPU,请根据实际情况调整batch_size; * `num_workers`: works的数量,默认为0; * `eval_dataset`: 验证集; * `log_interval`: 打印日志的间隔, 单位为执行批训练的次数。 * `save_interval`: 保存模型的间隔频次,单位为执行训练的轮数。 ## 模型预测 当完成Fine-tune后,Fine-tune过程在验证集上表现最优的模型会被保存在`${CHECKPOINT_DIR}/best_model`目录下,其中`${CHECKPOINT_DIR}`目录为Fine-tune时所选择的保存checkpoint的目录。 我们以以下数据为待预测数据,使用该模型来进行预测 ```text 这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般 怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片 作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。 ``` ```python import paddlehub as hub data = [ ['这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般'], ['怀着十分激动的心情放映,可是看着看着发现,在放映完毕后,出现一集米老鼠的动画片'], ['作为老的四星酒店,房间依然很整洁,相当不错。机场接机服务很好,可以在车上办理入住手续,节省时间。'], ] label_map = {0: 'negative', 1: 'positive'} model = hub.Module( name='ernie_tiny', version='2.0.1', task='seq-cls', load_checkpoint='./test_ernie_text_cls/best_model/model.pdparams', label_map=label_map) results = model.predict(data, max_seq_len=50, batch_size=1, use_gpu=False) for idx, text in enumerate(data): print('Data: {} \t Lable: {}'.format(text[0], results[idx])) ``` 参数配置正确后,请执行脚本`python predict.py`, 加载模型具体可参见[加载](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc/api/paddle/framework/io/load_cn.html#load)。