# pyramidbox_lite_mobile |Module Name|pyramidbox_lite_mobile| | :--- | :---: | |Category|face detection| |Network|PyramidBox| |Dataset|WIDER FACEDataset + 百度自采人脸Dataset| |Fine-tuning supported or not|No| |Module Size|7.3MB| |Latest update date|2021-02-26| |Data indicators|-| ## I.Basic Information - ### Application Effect Display - Sample results:


- ### Module Introduction - PyramidBox-Lite是基于2018年百度发表于计算机视觉顶级会议ECCV 2018的论文PyramidBox而研发的轻量级模型,模型基于主干网络FaceBoxes,对于光照、口罩遮挡、表情变化、尺度变化等常见问题具有很强的鲁棒性.该PaddleHub Module是针对于移动端优化过的模型,适合部署于移动端或者边缘检测等算力受限的设备上,并基于WIDER FACE数据集和百度自采人脸数据集进行训练,支持预测,可用于人脸检测. ## II.Installation - ### 1、Environmental Dependence - paddlepaddle >= 1.6.2 - paddlehub >= 1.6.0 | [How to install PaddleHub]() - ### 2、Installation - ```shell $ hub install pyramidbox_lite_mobile ``` - In case of any problems during installation, please refer to: [Windows_Quickstart]() | [Linux_Quickstart]() | [Mac_Quickstart]() ## III.Module API Prediction - ### 1、Command line Prediction - ```shell $ hub run pyramidbox_lite_mobile --input_path "/PATH/TO/IMAGE" ``` - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst) - ### 2、Prediction Code Example - ```python import paddlehub as hub import cv2 face_detector = hub.Module(name="pyramidbox_lite_mobile") result = face_detector.face_detection(images=[cv2.imread('/PATH/TO/IMAGE')]) # or # result = face_detector.face_detection(paths=['/PATH/TO/IMAGE']) ``` - ### 3、API - ```python def face_detection(images=None, paths=None, use_gpu=False, output_dir='detection_result', visualization=False, shrink=0.5, confs_threshold=0.6) ``` - 检测输入图片中的所有人脸位置. - **Parameters** - images (list\[numpy.ndarray\]): image data, ndarray.shape is in the format [H, W, C], BGR; - paths (list[str]): image path; - use_gpu (bool): use GPU or not; **set the CUDA_VISIBLE_DEVICES environment variable first if you are using GPU** - output_dir (str): save path of images; - visualization (bool): Whether to save the results as picture files; - shrink (float): 用于设置图片的缩放比例,该值越大,则对于输入图片中的小尺寸人脸有更好的检测效果(模型计算成本越高),反之则对于大尺寸人脸有更好的检测效果;
- confs\_threshold (float): 置信度的阈值. **NOTE:** choose one parameter to provide data from paths and images - **Return** - res (list\[dict\]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability - path (str): 原输入图片的路径 - data (list): 检测结果,list的每一个元素为 dict,各字段为: - confidence (float): 识别的置信度 - left (int): 边界框的左上角x坐标 - top (int): 边界框的左上角y坐标 - right (int): 边界框的右下角x坐标 - bottom (int): 边界框的右下角y坐标 - ```python def save_inference_model(dirname, model_filename=None, params_filename=None, combined=True) ``` - 将模型保存到指定路径. - **Parameters** - dirname: 存在模型的目录名称;
- model\_filename: 模型文件名称,默认为\_\_model\_\_;
- params\_filename: Parameters文件名称,默认为\_\_params\_\_(仅当`combined`为True时生效);
- combined: 是否将Parameters保存到统一的一个文件中. ## IV.Server Deployment - PaddleHub Serving can deploy an online service of face detection. - ### Step 1: Start PaddleHub Serving - Run the startup command: - ```shell $ hub serving start -m pyramidbox_lite_mobile ``` - The servitization API is now deployed and the default port number is 8866. - **NOTE:** If GPU is used for prediction, set CUDA_VISIBLE_DEVICES environment variable before the service, otherwise it need not be set. - ### Step 2: Send a predictive request - With a configured server, use the following lines of code to send the prediction request and obtain the result - ```python import requests import json import cv2 import base64 def cv2_to_base64(image): data = cv2.imencode('.jpg', image)[1] return base64.b64encode(data.tostring()).decode('utf8') # Send an HTTP request data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]} headers = {"Content-type": "application/json"} url = "http://127.0.0.1:8866/predict/pyramidbox_lite_mobile" r = requests.post(url=url, headers=headers, data=json.dumps(data)) # print prediction results print(r.json()["results"]) ``` ## V.Release Note * 1.0.0 First release * 1.2.0 - ```shell $ hub install pyramidbox_lite_mobile==1.2.0 ```