# spinalnet_vgg16_gemstone |Module Name|spinalnet_vgg16_gemstone| | :--- | :---: | |Category|image classification| |Network|vgg16| |Dataset|gemstone| |Fine-tuning supported or not|No| |Module Size|1.5GB| |Latest update date|-| |Data indicators|-| ## I.Basic Information - ### Module Introduction - 使用PaddleHub的SpinalNet预训练模型进行宝石识别或finetune并完成宝石的预测任务. ## II.Installation - ### 1、Environmental Dependence - paddlepaddle >= 2.0.0 - paddlehub >= 2.0.0 | [How to install PaddleHub]() - ### 2、Installation - ```shell $ hub install spinalnet_vgg16_gemstone ``` - In case of any problems during installation, please refer to: [Windows_Quickstart]() | [Linux_Quickstart]() | [Mac_Quickstart]() ## III.Module API Prediction - ### 1、Command line Prediction - ```shell $ hub run spinalnet_vgg16_gemstone --input_path "/PATH/TO/IMAGE" ``` - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst) - ### 2、预测Prediction Code Example - ```python import paddlehub as hub import cv2 classifier = hub.Module(name="spinalnet_vgg16_gemstone") result = classifier.predict(['/PATH/TO/IMAGE']) print(result) ``` - ### 3、API - ```python def predict(images) ``` - classification API. - **Parameters** - images: list类型,待预测的图像. - **Return** - result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability ## IV.Release Note * 1.0.0 First release - ```shell $ hub install spinalnet_vgg16_gemstone==1.0.0 ```