# resnext101_32x4d_imagenet |Module Name|resnext101_32x4d_imagenet| | :--- | :---: | |Category|image classification| |Network|ResNeXt| |Dataset|ImageNet-2012| |Fine-tuning supported or not|No| |Module Size|172MB| |Latest update date|-| |Data indicators|-| ## I.Basic Information - ### Module Introduction - ResNeXt is proposed by UC San Diego and Facebook AI Research in 2017. This module is based on resnext101_32x4d, which denotes 101 layers ,32 branches,and the number of input and output branch channels is 4 in the network. It is weak-supervised trained on billions of socail images, finetuned on ImageNet-2012 dataset, and can predict an image of size 224*224*3. ## II.Installation - ### 1、Environmental Dependence - paddlepaddle >= 1.4.0 - paddlehub >= 1.0.0 | [How to install PaddleHub]() - ### 2、Installation - ```shell $ hub install resnext101_32x4d_imagenet ``` - In case of any problems during installation, please refer to: [Windows_Quickstart]() | [Linux_Quickstart]() | [Mac_Quickstart]() ## III.Module API Prediction - ### 1、Command line Prediction - ```shell $ hub run resnext101_32x4d_imagenet --input_path "/PATH/TO/IMAGE" ``` - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst) - ### 2、预测Prediction Code Example - ```python import paddlehub as hub import cv2 classifier = hub.Module(name="resnext101_32x4d_imagenet") test_img_path = "/PATH/TO/IMAGE" input_dict = {"image": [test_img_path]} result = classifier.classification(data=input_dict) ``` - ### 3、API - ```python def classification(data) ``` - classification API. - **Parameters** - data (dict): key is "image", value is a list of image paths - **Return** - result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability ## IV.Release Note * 1.0.0 First release - ```shell $ hub install resnext101_32x4d_imagenet==1.0.0 ```