# densenet169_imagenet |Module Name|densenet169_imagenet| | :--- | :---: | |Category|image classification| |Network|DenseNet| |Dataset|ImageNet-2012| |Fine-tuning supported or not|No| |Module Size|59MB| |Latest update date|-| |Data indicators|-| ## I.Basic Information - ### Module Introduction - DenseNet 是 CVPR 2017 最佳论文的模型,DenseNet 以前馈方式将每一层与其他层连接,从而 L 层网络就有 L(L+1)/2 个直接连接.对于每一层,其输入是之前的所有层的特征图,而自己的特征图作为之后所有层的输入.DenseNet 缓解了梯度消失问题,加强特征传播,促进了特征重用,并大幅减少了Parameters量.该PaddleHub Module结构为 DenseNet169,基于ImageNet-2012数据集训练,接受输入图片大小为 224 x 224 x 3,支持直接通过命令行或者Python接口进行预测. ## II.Installation - ### 1、Environmental Dependence - paddlepaddle >= 1.4.0 - paddlehub >= 1.0.0 | [How to install PaddleHub]() - ### 2、Installation - ```shell $ hub install densenet169_imagenet ``` - In case of any problems during installation, please refer to: [Windows_Quickstart]() | [Linux_Quickstart]() | [Mac_Quickstart]() ## III.Module API Prediction - ### 1、Command line Prediction - ```shell $ hub run densenet169_imagenet --input_path "/PATH/TO/IMAGE" ``` - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst) - ### 2、预测Prediction Code Example - ```python import paddlehub as hub import cv2 classifier = hub.Module(name="densenet169_imagenet") test_img_path = "/PATH/TO/IMAGE" input_dict = {"image": [test_img_path]} result = classifier.classification(data=input_dict) ``` - ### 3、API - ```python def classification(data) ``` - classification API. - **Parameters** - data (dict): key is "image", value is a list of image paths - **Return** - result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability ## IV.Release Note * 1.0.0 First release - ```shell $ hub install densenet169_imagenet==1.0.0 ```