# DriverStatusRecognition |Module Name|DriverStatusRecognition| | :--- | :---: | |Category|image classification| |Network|MobileNetV3_small_ssld| |Dataset|分心司机检测Dataset| |Fine-tuning supported or not|No| |Module Size|6MB| |Latest update date|-| |Data indicators|-| ## I.Basic Information - ### Module Introduction - 驾驶员状态识别(DriverStatusRecognition),该模型可挖掘出人在疲劳状态下的表情特征,然后将这些定性的表情特征进行量化,提取出面部特征点及特征指标作为判断依据,再结合实验数据总结出基于这些Parameters的识别方法,最后输入获取到的状态数据进行识别和判断.该PaddleHub Module支持API预测及命令行预测. ## II.Installation - ### 1、Environmental Dependence - paddlepaddle >= 2.0.0 - paddlehub >= 2.0.0 | [How to install PaddleHub]() - paddlex >= 1.3.7 - ### 2、Installation - ```shell $ hub install DriverStatusRecognition ``` - In case of any problems during installation, please refer to: [Windows_Quickstart]() | [Linux_Quickstart]() | [Mac_Quickstart]() - ### 3、在线体验 [AI Studio 快速体验](https://aistudio.baidu.com/aistudio/projectdetail/1649513) ## III.Module API Prediction - ### 1、Command line Prediction - ```shell $ hub run DriverStatusRecognition --input_path /PATH/TO/IMAGE ``` - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst) - ### 2、预测Prediction Code Example - ```python import paddlehub as hub import cv2 classifier = hub.Module(name="DriverStatusRecognition") images = [cv2.imread('/PATH/TO/IMAGE')] results = classifier.predict(images=images) for result in results: print(result) ``` - ### 3、API - ```python def predict(images) ``` - classification API. - **Parameters** - images:list类型,待检测的图像. - **Return** - result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability ## IV.Release Note * 1.0.0 First release - ```shell $ hub install DriverStatusRecognition==1.0.0 ```