---- # finetune ---- ## `method paddlehub.finetune.task.finetune(task, data_reader, feed_list, config=None):` 对一个Task进行finetune。在finetune的过程中,接口会定期的保存checkpoint(模型和运行数据),当运行被中断时,通过RunConfig指定上一次运行的checkpoint目录,可以直接从上一次运行的最后一次评估中恢复状态继续运行 > ### 参数 > * task: 需要执行的Task > > * data_reader: 提供数据的reader > > * feed_list: reader的feed列表 > > * config: 运行配置 > > ### 示例 > > ```python > import paddlehub as hub > import paddle.fluid as fluid > > resnet_module = hub.Module(name="resnet_v2_50_imagenet") > input_dict, output_dict, program = resnet_module.context(trainable=True) > dataset = hub.dataset.Flowers() > data_reader = hub.reader.ImageClassificationReader( > image_width=resnet_module.get_excepted_image_width(), > image_height=resnet_module.get_excepted_image_height(), > dataset=dataset) > with fluid.program_guard(program): > label = fluid.layers.data(name="label", dtype="int64", shape=[1]) > img = input_dict[0] > feature_map = output_dict[0] > > feed_list = [img.name, label.name] > > task = hub.create_img_cls_task( > feature=feature_map, label=label, num_classes=dataset.num_labels) > hub.finetune( > task, feed_list=feed_list, data_reader=data_reader) > ```