# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning on classification task """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import argparse import numpy as np import paddle import paddle.fluid as fluid import paddlehub as hub # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': # loading Paddlehub ERNIE pretrained model module = hub.Module(name="ernie") input_dict, output_dict, program = module.context( max_seq_len=args.max_seq_len) # Sentence classification dataset reader dataset = hub.dataset.ChnSentiCorp() reader = hub.reader.ClassifyReader( dataset=dataset, vocab_path=module.get_vocab_path(), max_seq_len=args.max_seq_len) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) with fluid.program_guard(program): label = fluid.layers.data(name="label", shape=[1], dtype='int64') # Use "pooled_output" for classification tasks on an entire sentence. # Use "sequence_outputs" for token-level output. pooled_output = output_dict["pooled_output"] # Setup feed list for data feeder # Must feed all the tensor of ERNIE's module need feed_list = [ input_dict["input_ids"].name, input_dict["position_ids"].name, input_dict["segment_ids"].name, input_dict["input_mask"].name, label.name ] # Define a classfication finetune task by PaddleHub's API cls_task = hub.create_text_classification_task( feature=pooled_output, label=label, num_classes=dataset.num_labels) # classificatin probability tensor probs = cls_task.variable("probs") pred = fluid.layers.argmax(probs, axis=1) # load best model checkpoint fluid.io.load_persistables(exe, args.checkpoint_dir) inference_program = program.clone(for_test=True) data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place) test_reader = reader.data_generator(phase='test', shuffle=False) test_examples = dataset.get_test_examples() total = 0 correct = 0 for index, batch in enumerate(test_reader()): pred_v = exe.run( feed=data_feeder.feed(batch), fetch_list=[pred.name], program=inference_program) total += 1 if (pred_v[0][0] == int(test_examples[index].label)): correct += 1 acc = 1.0 * correct / total print("%s\tpredict=%s" % (test_examples[index], pred_v[0][0])) print("accuracy = %f" % acc)