#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fine-tuning on classification task """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import paddlehub as hub # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--batch_size", type=int, default=1, help="Total examples' number in batch for training.") parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for fine-tuning, input should be True or False") parser.add_argument("--use_data_parallel", type=ast.literal_eval, default=False, help="Whether use data parallel.") parser.add_argument("--network", type=str, default='bilstm', help="Pre-defined network which was connected after Transformer model, such as ERNIE, BERT ,RoBERTa and ELECTRA.") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': # Load Paddlehub ERNIE Tiny pretrained model module = hub.Module(name="ernie_tiny") inputs, outputs, program = module.context( trainable=True, max_seq_len=args.max_seq_len) # Download dataset and get its label list and label num # If you just want labels information, you can omit its tokenizer parameter to avoid preprocessing the train set. dataset = hub.dataset.ChnSentiCorp() num_classes = dataset.num_labels label_list = dataset.get_labels() # Construct transfer learning network # Use "pooled_output" for classification tasks on an entire sentence. # Use "sequence_output" for token-level output. token_feature = outputs["sequence_output"] # Setup RunConfig for PaddleHub Fine-tune API config = hub.RunConfig( use_data_parallel=args.use_data_parallel, use_cuda=args.use_gpu, batch_size=args.batch_size, checkpoint_dir=args.checkpoint_dir, strategy=hub.AdamWeightDecayStrategy()) # Define a classfication fine-tune task by PaddleHub's API # network choice: bilstm, bow, cnn, dpcnn, gru, lstm (PaddleHub pre-defined network) # If you wanna add network after ERNIE/BERT/RoBERTa/ELECTRA module, # you must use the outputs["sequence_output"] as the token_feature of TextClassifierTask, # rather than outputs["pooled_output"], and feature is None cls_task = hub.TextClassifierTask( token_feature=token_feature, network=args.network, num_classes=dataset.num_labels, config=config) # Data to be prdicted text_a = [ "这个宾馆比较陈旧了,特价的房间也很一般。总体来说一般", "交通方便;环境很好;服务态度很好 房间较小", "19天硬盘就罢工了~~~算上运来的一周都没用上15天~~~可就是不能换了~~~唉~~~~你说这算什么事呀~~~" ] # Use the appropriate tokenizer to preprocess the data # For ernie_tiny, it will do word segmentation to get subword. More details: https://www.jiqizhixin.com/articles/2019-11-06-9 if module.name == "ernie_tiny": tokenizer = hub.ErnieTinyTokenizer( vocab_file=module.get_vocab_path(), spm_path=module.get_spm_path(), word_dict_path=module.get_word_dict_path()) else: tokenizer = hub.BertTokenizer(vocab_file=module.get_vocab_path()) encoded_data = [ tokenizer.encode(text=text, max_seq_len=args.max_seq_len) for text in text_a ] print(cls_task.predict(data=encoded_data, label_list=label_list))