#coding:utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import numpy as np import os import time import paddle import paddle.fluid as fluid import paddlehub as hub # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for finetuning, input should be True or False") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': # loading Paddlehub senta pretrained model module = hub.Module(name="senta_bilstm") inputs, outputs, program = module.context(trainable=True) # Sentence classification dataset reader dataset = hub.dataset.ChnSentiCorp() reader = hub.reader.LACClassifyReader( dataset=dataset, vocab_path=module.get_vocab_path()) strategy = hub.AdamWeightDecayStrategy( weight_decay=0.01, warmup_proportion=0.1, learning_rate=5e-5, lr_scheduler="linear_decay", optimizer_name="adam") config = hub.RunConfig( use_data_parallel=False, use_pyreader=False, use_cuda=args.use_gpu, batch_size=1, enable_memory_optim=False, checkpoint_dir=args.checkpoint_dir, strategy=strategy) sent_feature = outputs["sentence_feature"] feed_list = [inputs["words"].name] cls_task = hub.TextClassifierTask( data_reader=reader, feature=sent_feature, feed_list=feed_list, num_classes=dataset.num_labels, config=config) data = ["这家餐厅很好吃", "这部电影真的很差劲"] run_states = cls_task.predict(data=data) results = [run_state.run_results for run_state in run_states] index = 0 for batch_result in results: batch_result = np.argmax(batch_result, axis=2)[0] for result in batch_result: print("%s\tpredict=%s" % (data[index], result)) index += 1