import paddle import paddleaudio from paddleaudio.features.spectrum import hz_to_mel from paddleaudio.features.spectrum import mel_to_hz from paddleaudio.features.spectrum import power_to_db from paddleaudio.features.spectrum import Spectrogram from paddleaudio.features.window import get_window def compute_fbank_matrix(sample_rate: int = 16000, n_fft: int = 400, n_mels: int = 80, f_min: int = 0.0, f_max: int = 8000.0): mel = paddle.linspace(hz_to_mel(f_min, htk=True), hz_to_mel(f_max, htk=True), n_mels + 2, dtype=paddle.float32) hz = mel_to_hz(mel, htk=True) band = hz[1:] - hz[:-1] band = band[:-1] f_central = hz[1:-1] n_stft = n_fft // 2 + 1 all_freqs = paddle.linspace(0, sample_rate // 2, n_stft) all_freqs_mat = all_freqs.tile([f_central.shape[0], 1]) f_central_mat = f_central.tile([all_freqs_mat.shape[1], 1]).transpose([1, 0]) band_mat = band.tile([all_freqs_mat.shape[1], 1]).transpose([1, 0]) slope = (all_freqs_mat - f_central_mat) / band_mat left_side = slope + 1.0 right_side = -slope + 1.0 fbank_matrix = paddle.maximum(paddle.zeros_like(left_side), paddle.minimum(left_side, right_side)) return fbank_matrix def compute_log_fbank( x: paddle.Tensor, sample_rate: int = 16000, n_fft: int = 400, hop_length: int = 160, win_length: int = 400, n_mels: int = 80, window: str = 'hamming', center: bool = True, pad_mode: str = 'constant', f_min: float = 0.0, f_max: float = None, top_db: float = 80.0, ): if f_max is None: f_max = sample_rate / 2 spect = Spectrogram( n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode)(x) fbank_matrix = compute_fbank_matrix( sample_rate=sample_rate, n_fft=n_fft, n_mels=n_mels, f_min=f_min, f_max=f_max, ) fbank = paddle.matmul(fbank_matrix, spect) log_fbank = power_to_db(fbank, top_db=top_db).transpose([0, 2, 1]) return log_fbank def compute_stats(x: paddle.Tensor, mean_norm: bool = True, std_norm: bool = False, eps: float = 1e-10): if mean_norm: current_mean = paddle.mean(x, axis=0) else: current_mean = paddle.to_tensor([0.0]) if std_norm: current_std = paddle.std(x, axis=0) else: current_std = paddle.to_tensor([1.0]) current_std = paddle.maximum(current_std, eps * paddle.ones_like(current_std)) return current_mean, current_std def normalize( x: paddle.Tensor, global_mean: paddle.Tensor = None, global_std: paddle.Tensor = None, ): for i in range(x.shape[0]): # (B, ...) if global_mean is None and global_std is None: mean, std = compute_stats(x[i]) x[i] = (x[i] - mean) / std else: x[i] = (x[i] - global_mean) / global_std return x