import argparse import os import paddle.fluid as fluid import paddlehub as hub import numpy as np # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--num_epoch", type=int, default=1, help="Number of epoches for fine-tuning.") parser.add_argument("--use_gpu", type=bool, default=False, help="Whether use GPU for fine-tuning.") parser.add_argument("--checkpoint_dir", type=str, default="paddlehub_finetune_ckpt", help="Path to save log data.") parser.add_argument("--batch_size", type=int, default=16, help="Total examples' number in batch for training.") parser.add_argument("--module", type=str, default="resnet50", help="Module used as feature extractor.") parser.add_argument("--dataset", type=str, default="flowers", help="Dataset to finetune.") # yapf: enable. module_map = { "resnet50": "resnet_v2_50_imagenet", "resnet101": "resnet_v2_101_imagenet", "resnet152": "resnet_v2_152_imagenet", "mobilenet": "mobilenet_v2_imagenet", "nasnet": "nasnet_imagenet", "pnasnet": "pnasnet_imagenet" } def finetune(args): module = hub.Module(name=args.module) input_dict, output_dict, program = module.context(trainable=True) if args.dataset.lower() == "flowers": dataset = hub.dataset.Flowers() elif args.dataset.lower() == "dogcat": dataset = hub.dataset.DogCat() elif args.dataset.lower() == "indoor67": dataset = hub.dataset.Indoor67() elif args.dataset.lower() == "food101": dataset = hub.dataset.Food101() elif args.dataset.lower() == "stanforddogs": dataset = hub.dataset.StanfordDogs() else: raise ValueError("%s dataset is not defined" % args.dataset) data_reader = hub.reader.ImageClassificationReader( image_width=module.get_expected_image_width(), image_height=module.get_expected_image_height(), images_mean=module.get_pretrained_images_mean(), images_std=module.get_pretrained_images_std(), dataset=dataset) feature_map = output_dict["feature_map"] task = hub.create_img_cls_task( feature=feature_map, num_classes=dataset.num_labels) img = input_dict["image"] feed_list = [img.name, task.variable('label').name] config = hub.RunConfig( use_cuda=args.use_gpu, num_epoch=args.num_epoch, batch_size=args.batch_size, enable_memory_optim=False, checkpoint_dir=args.checkpoint_dir, strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) hub.finetune_and_eval( task, feed_list=feed_list, data_reader=data_reader, config=config) if __name__ == "__main__": args = parser.parse_args() if not args.module in module_map: hub.logger.error("module should in %s" % module_map.keys()) exit(1) args.module = module_map[args.module] finetune(args)