# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import base64 import cv2 import numpy as np def base64_to_cv2(b64str): data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data def softmax(x): if len(x.shape) > 1: tmp = np.max(x, axis=1) x -= tmp.reshape((x.shape[0], 1)) x = np.exp(x) tmp = np.sum(x, axis=1) x /= tmp.reshape((x.shape[0], 1)) else: tmp = np.max(x) x -= tmp x = np.exp(x) tmp = np.sum(x) x /= tmp return x def postprocess(data_out, label_list, top_k): """ Postprocess output of network, one image at a time. Args: data_out (numpy.ndarray): output data of network. label_list (list): list of label. top_k (int): Return top k results. """ output = [] for result in data_out: result_i = softmax(result) output_i = {} indexs = np.argsort(result_i)[::-1][0:top_k] for index in indexs: label = label_list[index].split(',')[0] output_i[label] = float(result_i[index]) output.append(output_i) return output