# yolov3_darknet53_pedestrian |Module Name|yolov3_darknet53_pedestrian| | :--- | :---: | |Category|object detection| |Network|YOLOv3| |Dataset|百度自建大规模行人Dataset| |Fine-tuning supported or not|No| |Module Size|238MB| |Latest update date|2021-03-15| |Data indicators|-| ## I.Basic Information - ### Application Effect Display - Sample results:


- ### Module Introduction - 行人检测是计算机视觉技术中的目标检测问题,用于判断图像中是否存在行人并给予精确定位,定位结果用矩形框表示.行人检测技术有很强的使用价值,它可以与行人跟踪、行人重识别等技术结合,应用于汽车无人驾驶系统、智能视频监控、人体行为分析、客流统计系统、智能交通等领域.yolov3_darknet53_pedestrian Module的网络为YOLOv3, 其中backbone为DarkNet53, 采用百度自建大规模车辆数据集训练得到,目前仅支持预测. ## II.Installation - ### 1、Environmental Dependence - paddlepaddle >= 1.6.2 - paddlehub >= 1.6.0 | [How to install PaddleHub]() - ### 2、Installation - ```shell $ hub install yolov3_darknet53_pedestrian ``` - In case of any problems during installation, please refer to: [Windows_Quickstart]() | [Linux_Quickstart]() | [Mac_Quickstart]() ## III.Module API Prediction - ### 1、Command line Prediction - ```shell $ hub run yolov3_darknet53_pedestrian --input_path "/PATH/TO/IMAGE" ``` - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst) - ### 2、Prediction Code Example - ```python import paddlehub as hub import cv2 pedestrian_detector = hub.Module(name="yolov3_darknet53_pedestrian") result = pedestrian_detector.object_detection(images=[cv2.imread('/PATH/TO/IMAGE')]) # or # result = pedestrian_detector.object_detection(paths=['/PATH/TO/IMAGE']) ``` - ### 3、API - ```python def object_detection(paths=None, images=None, batch_size=1, use_gpu=False, output_dir='yolov3_pedestrian_detect_output', score_thresh=0.2, visualization=True) ``` - 预测API,检测输入图片中的所有行人的位置. - **Parameters** - paths (list[str]): image path; - images (list\[numpy.ndarray\]): image data, ndarray.shape is in the format [H, W, C], BGR; - batch_size (int): the size of batch; - use_gpu (bool): use GPU or not; **set the CUDA_VISIBLE_DEVICES environment variable first if you are using GPU** - output_dir (str): save path of images; - score\_thresh (float): 识别置信度的阈值;
- visualization (bool): Whether to save the results as picture files; **NOTE:** choose one parameter to provide data from paths and images - **Return** - res (list\[dict\]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability - data (list): 检测结果,list的每一个元素为 dict,各字段为: - confidence (float): 识别的置信度 - label (str): 标签 - left (int): 边界框的左上角x坐标 - top (int): 边界框的左上角y坐标 - right (int): 边界框的右下角x坐标 - bottom (int): 边界框的右下角y坐标 - save\_path (str, optional): 识别结果的保存路径 (仅当visualization=True时存在) - ```python def save_inference_model(dirname, model_filename=None, params_filename=None, combined=True) ``` - 将模型保存到指定路径. - **Parameters** - dirname: 存在模型的目录名称;
- model\_filename: 模型文件名称,默认为\_\_model\_\_;
- params\_filename: Parameters文件名称,默认为\_\_params\_\_(仅当`combined`为True时生效);
- combined: 是否将Parameters保存到统一的一个文件中. ## IV.Server Deployment - PaddleHub Serving can deploy an online service of object detection. - ### Step 1: Start PaddleHub Serving - Run the startup command: - ```shell $ hub serving start -m yolov3_darknet53_pedestrian ``` - The servitization API is now deployed and the default port number is 8866. - **NOTE:** If GPU is used for prediction, set CUDA_VISIBLE_DEVICES environment variable before the service, otherwise it need not be set. - ### Step 2: Send a predictive request - With a configured server, use the following lines of code to send the prediction request and obtain the result - ```python import requests import json import cv2 import base64 def cv2_to_base64(image): data = cv2.imencode('.jpg', image)[1] return base64.b64encode(data.tostring()).decode('utf8') # Send an HTTP request data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]} headers = {"Content-type": "application/json"} url = "http://127.0.0.1:8866/predict/yolov3_darknet53_pedestrian" r = requests.post(url=url, headers=headers, data=json.dumps(data)) # print prediction results print(r.json()["results"]) ``` ## V.Release Note * 1.0.0 First release * 1.0.2 Fix the problem of reading numpy - ```shell $ hub install yolov3_darknet53_pedestrian==1.0.2 ```