# marine_biometrics |Module Name|marine_biometrics| | :--- | :---: | |Category|image classification| |Network|ResNet50_vd_ssld| |Dataset|Fish4Knowledge| |Fine-tuning supported or not|No| |Module Size|84MB| |Latest update date|-| |Data indicators|-| ## I.Basic Information - ### Module Introduction - This module can be used to classify marine biometrics. ## II.Installation - ### 1、Environmental Dependence - paddlepaddle >= 2.0.0 - paddlehub >= 2.0.0 | [How to install PaddleHub]() - ### 2、Installation - ```shell $ hub install marine_biometrics ``` - In case of any problems during installation, please refer to: [Windows_Quickstart]() | [Linux_Quickstart]() | [Mac_Quickstart]() ## III.Module API Prediction - ### 1、Command line Prediction - ```shell $ hub run marine_biometrics --input_path "/PATH/TO/IMAGE" ``` - If you want to call the Hub module through the command line, please refer to: [PaddleHub Command Line Instruction](../../../../docs/docs_ch/tutorial/cmd_usage.rst) - ### 2、Prediction Code Example - ```python import paddlehub as hub import cv2 classifier = hub.Module(name="marine_biometrics") images = [cv2.imread('/PATH/TO/IMAGE')] results = classifier.predict(images=images) for result in results: print(result) ``` - ### 3、API - ```python def predict(images) ``` - classification API. - **Parameters** - images (list\[numpy.ndarray\]): image data, ndarray.shape is in the format [H, W, C], BGR; - **Return** - result(list[dict]): classication results, each element in the list is dict, key is the label name, and value is the corresponding probability ## IV.Release Note * 1.0.0 First release - ```shell $ hub install marine_biometrics==1.0.0 ```