#coding:utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import paddle import paddle.fluid as fluid from paddlehub.module import module_desc_pb2 from paddlehub.common.utils import from_pyobj_to_module_attr, from_module_attr_to_pyobj, version_compare from paddlehub.common.logger import logger dtype_map = { fluid.core.VarDesc.VarType.FP32: "float32", fluid.core.VarDesc.VarType.FP64: "float64", fluid.core.VarDesc.VarType.FP16: "float16", fluid.core.VarDesc.VarType.INT32: "int32", fluid.core.VarDesc.VarType.INT16: "int16", fluid.core.VarDesc.VarType.INT64: "int64", fluid.core.VarDesc.VarType.BOOL: "bool", fluid.core.VarDesc.VarType.INT16: "int16", fluid.core.VarDesc.VarType.UINT8: "uint8", fluid.core.VarDesc.VarType.INT8: "int8", } def convert_dtype_to_string(dtype): if dtype in dtype_map: return dtype_map[dtype] raise TypeError("dtype shoule in %s" % list(dtype_map.keys())) def get_variable_info(var): if not isinstance(var, fluid.framework.Variable): raise TypeError("var shoule be an instance of fluid.framework.Variable") var_info = { 'name': var.name, 'stop_gradient': var.stop_gradient, 'is_data': var.is_data, 'error_clip': var.error_clip, 'type': var.type } try: var_info['dtype'] = convert_dtype_to_string(var.dtype) var_info['lod_level'] = var.lod_level var_info['shape'] = var.shape except: pass if isinstance(var, fluid.framework.Parameter): var_info['trainable'] = var.trainable var_info['optimize_attr'] = var.optimize_attr var_info['regularizer'] = var.regularizer if not version_compare(paddle.__version__, '1.8'): var_info['gradient_clip_attr'] = var.gradient_clip_attr var_info['do_model_average'] = var.do_model_average else: var_info['persistable'] = var.persistable return var_info def from_param_to_module_attr(param, module_attr): def paddle_obj_filter(pyobj): return isinstance(pyobj, fluid.framework.Variable) or isinstance( pyobj, fluid.framework.Block) or isinstance( pyobj, fluid.framework.Program) or isinstance( pyobj, fluid.framework.Operator) module_attr.type = module_desc_pb2.MAP from_pyobj_to_module_attr(param.trainable, module_attr.map.data['trainable']) from_pyobj_to_module_attr(param.do_model_average, module_attr.map.data['do_model_average']) from_pyobj_to_module_attr(param.optimize_attr, module_attr.map.data['optimize_attr']) from_pyobj_to_module_attr( param.regularizer, module_attr.map.data['regularizer'], obj_filter=paddle_obj_filter) from_pyobj_to_module_attr( param.gradient_clip_attr, module_attr.map.data['gradient_clip_attr'], obj_filter=paddle_obj_filter) def from_module_attr_to_param(module_attr): param = {'gradient_clip_attr': None, 'regularizer': None} param['trainable'] = from_module_attr_to_pyobj( module_attr.map.data['trainable']) param['do_model_average'] = from_module_attr_to_pyobj( module_attr.map.data['do_model_average']) # do not recover learning rate #param['optimize_attr'] = from_module_attr_to_pyobj( # module_attr.map.data['optimize_attr']) if module_attr.map.data['regularizer'].type != module_desc_pb2.NONE: regularizer_type = module_attr.map.data['regularizer'].name regularization_coeff = from_module_attr_to_pyobj( module_attr.map.data['regularizer'].object. data['_regularization_coeff']) param['regularizer'] = eval( "fluid.regularizer.%s(regularization_coeff = %f)" % (regularizer_type, regularization_coeff)) if module_attr.map.data['gradient_clip_attr'].type != module_desc_pb2.NONE: clip_type = module_attr.map.data['gradient_clip_attr'].name if clip_type == "ErrorClipByValue" or clip_type == "GradientClipByValue": max = from_module_attr_to_pyobj( module_attr.map.data['gradient_clip_attr'].object.data['max']) min = from_module_attr_to_pyobj( module_attr.map.data['gradient_clip_attr'].object.data['min']) param['gradient_clip_attr'] = eval( "fluid.clip.%s(max = %f, min = %f)" % (clip_type, max, min)) if clip_type == "GradientClipByNorm": clip_norm = from_module_attr_to_pyobj( module_attr.map.data['gradient_clip_attr'].object. data['clip_norm']) param['gradient_clip_attr'] = eval( "fluid.clip.%s(clip_norm = %f)" % (clip_type, clip_norm)) if clip_type == "GradientClipByGlobalNorm": clip_norm = from_module_attr_to_pyobj( module_attr.map.data['gradient_clip_attr'].object. data['clip_norm']) group_name = from_module_attr_to_pyobj( module_attr.map.data['gradient_clip_attr'].object. data['group_name']) param['gradient_clip_attr'] = eval( "fluid.clip.%s(clip_norm = %f, group_name = \"%s\")" % (clip_type, clip_norm, group_name)) return param def _copy_vars_and_ops_in_blocks(from_block, to_block): for var in from_block.vars: var = from_block.var(var) var_info = copy.deepcopy(get_variable_info(var)) if isinstance(var, fluid.framework.Parameter): to_block.create_parameter(**var_info) else: to_block.create_var(**var_info) for op in from_block.ops: all_attrs = op.all_attrs() if 'sub_block' in all_attrs: _sub_block = to_block.program._create_block() _copy_vars_and_ops_in_blocks(all_attrs['sub_block'], _sub_block) to_block.program._rollback() new_attrs = {'sub_block': _sub_block} for key, value in all_attrs.items(): if key == 'sub_block': continue new_attrs[key] = copy.deepcopy(value) else: new_attrs = copy.deepcopy(all_attrs) op_info = { 'type': op.type, 'inputs': { input: [to_block._find_var_recursive(var) for var in op.input(input)] for input in op.input_names }, 'outputs': { output: [ to_block._find_var_recursive(var) for var in op.output(output) ] for output in op.output_names }, 'attrs': new_attrs } to_block.append_op(**op_info) def connect_program(pre_program, next_program, input_dict=None, inplace=True, need_log=True): if not isinstance(pre_program, fluid.Program): raise TypeError("pre_program shoule be an instance of fluid.Program") if not isinstance(next_program, fluid.Program): raise TypeError("next_program shoule be an instance of fluid.Program") output_program = pre_program if inplace else pre_program.clone( for_test=False) if input_dict: if not isinstance(input_dict, dict): raise TypeError( "input_dict shoule be a python dict like {str:fluid.framework.Variable}" ) for key, var in input_dict.items(): if not isinstance(var, fluid.framework.Variable): raise TypeError( "input_dict shoule be a python dict like {str:fluid.framework.Variable}" ) var_info = copy.deepcopy(get_variable_info(var)) input_var = output_program.global_block().create_var(**var_info) output_var = next_program.global_block().var(key) var_info = copy.deepcopy(get_variable_info(output_var)) output_var = output_program.global_block().create_var(**var_info) output_program.global_block().append_op( type="assign", inputs={'X': input_var}, outputs={'Out': output_var}) block_map = {0: 0} if need_log: logger.info("Connect program's input tensor") for index, block in enumerate(next_program.blocks): if block.idx == 0: _copy_vars_and_ops_in_blocks(block, output_program.global_block()) else: block_map[index] = len(output_program.blocks) logger.info( "block_%d in next_program merge into block_%d in pre_program" % (index, block_map[index])) new_block = output_program._create_block( parent_idx=block_map[block.parent_idx]) _copy_vars_and_ops_in_blocks(block, new_block) if need_log: logger.info("Connect program's input tensor done") return output_program def remove_feed_fetch_op(program): """ remove feed and fetch operator and variable for fine-tuning """ block = program.global_block() need_to_remove_op_index = [] for i, op in enumerate(block.ops): if op.type == "feed" or op.type == "fetch": need_to_remove_op_index.append(i) for index in need_to_remove_op_index[::-1]: block._remove_op(index) need_to_remove_var = [] for var in block.vars: if var.endswith("feed"): need_to_remove_var.append(var) if var.endswith("fetch"): need_to_remove_var.append(var) for var in need_to_remove_var: block._remove_var(var) program.desc.flush() def set_parameter_trainable(program, trainable=True): for param in program.global_block().iter_parameters(): param.trainable = trainable def set_parameter_regularizer(program, regularizer): for param in program.global_block().iter_parameters(): param.regularizer = regularizer def set_parameter_learning_rate(program, learning_rate): for param in program.global_block().iter_parameters(): param.optimize_attr['learning_rate'] = learning_rate def set_op_attr(program, is_test=False): for block in program.blocks: for op in block.ops: if op.has_attr("is_test"): op._set_attr("is_test", is_test) def clone_program(origin_program, for_test=False): dest_program = fluid.Program() _copy_vars_and_ops_in_blocks(origin_program.global_block(), dest_program.global_block()) dest_program = dest_program.clone(for_test=for_test) if not for_test: for name, var in origin_program.global_block().vars.items(): dest_program.global_block( ).vars[name].stop_gradient = var.stop_gradient return dest_program def rename_var(block, old_name, new_name): for op in block.ops: for input_name in op.input_arg_names: if input_name == old_name: op._rename_input(old_name, new_name) for output_name in op.output_arg_names: if output_name == old_name: op._rename_output(old_name, new_name) block._rename_var(old_name, new_name) def add_vars_prefix(program, prefix, vars=None, excludes=None): block = program.global_block() vars = list(vars) if vars else list(block.vars.keys()) vars = [var for var in vars if var not in excludes] if excludes else vars for var in vars: rename_var(block, var, prefix + var) def remove_vars_prefix(program, prefix, vars=None, excludes=None): block = program.global_block() vars = [var for var in vars if var.startswith(prefix)] if vars else [ var for var in block.vars.keys() if var.startswith(prefix) ] vars = [var for var in vars if var not in excludes] if excludes else vars for var in vars: rename_var(block, var, var.replace(prefix, "", 1))