## 概述 * ![](http://latex.codecogs.com/svg.latex?U^2Net)的网络结构如下图,其类似于编码-解码(Encoder-Decoder)结构的 U-Net * 每个 stage 由新提出的 RSU模块(residual U-block) 组成. 例如,En_1 即为基于 RSU 构建的 * ![](http://latex.codecogs.com/svg.latex?U^2Net^+)是一个小型化的![](http://latex.codecogs.com/svg.latex?U^2Net) ![](https://ai-studio-static-online.cdn.bcebos.com/999d37b4ffdd49dc9e3315b7cec7b2c6918fdd57c8594ced9dded758a497913d) ## 效果展示 ![](https://ai-studio-static-online.cdn.bcebos.com/4d77bc3a05cf48bba6f67b797978f4cdf10f38288b9645d59393dd85cef58eff) ![](https://ai-studio-static-online.cdn.bcebos.com/865b7b6a262b4ce3bbba4a5c0d973d9eea428bc3e8af4f76a1cdab0c04e3dd33) ![](https://ai-studio-static-online.cdn.bcebos.com/11c9eba8de6d4316b672f10b285245061821f0a744e441f3b80c223881256ca0) ## API ```python def Segmentation( images=None, paths=None, batch_size=1, input_size=320, output_dir='output', visualization=False): ``` 图像前景背景分割 API **参数** * images (list[np.ndarray]) : 输入图像数据列表(BGR) * paths (list[str]) : 输入图像路径列表 * batch_size (int) : 数据批大小 * input_size (int) : 输入图像大小 * output_dir (str) : 可视化图像输出目录 * visualization (bool) : 是否可视化 **返回** * results (list[np.ndarray]): 输出图像数据列表 **代码示例** ```python import cv2 import paddlehub as hub model = hub.Module(name='U2Netp') result = model.Segmentation( images=[cv2.imread('/PATH/TO/IMAGE')], paths=None, batch_size=1, input_size=320, output_dir='output', visualization=True) ``` ## 查看代码 https://github.com/NathanUA/U-2-Net ## 依赖 paddlepaddle >= 2.0.0rc0 paddlehub >= 2.0.0b1