# coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import unittest import cv2 import numpy as np import paddle.fluid as fluid import paddlehub as hub pic_dir = '../image_dataset/classification/dish/' class TestResNet50vdDish(unittest.TestCase): @classmethod def setUpClass(self): """Prepare the environment once before execution of all tests.\n""" self.dish_classify = hub.Module(name="resnet50_vd_dishes") @classmethod def tearDownClass(self): """clean up the environment after the execution of all tests.\n""" self.dish_classify = None def setUp(self): "Call setUp() to prepare environment\n" self.test_prog = fluid.Program() def tearDown(self): "Call tearDown to restore environment.\n" self.test_prog = None def test_context(self): self.dish_classify.context(pretrained=True) def test_single_pic(self): with fluid.program_guard(self.test_prog): pics_path_list = [ os.path.join(pic_dir, f) for f in os.listdir(pic_dir) ] print('\n') for pic_path in pics_path_list: print(pic_path) result = self.dish_classify.classification( paths=[pic_path], use_gpu=False) print(result) def test_batch(self): with fluid.program_guard(self.test_prog): pics_path_list = [ os.path.join(pic_dir, f) for f in os.listdir(pic_dir) ] print('\n') result = self.dish_classify.classification( paths=pics_path_list, batch_size=3, use_gpu=False) print(result) def test_ndarray(self): with fluid.program_guard(self.test_prog): pics_path_list = [ os.path.join(pic_dir, f) for f in os.listdir(pic_dir) ] pics_ndarray = list() print('\n') for pic_path in pics_path_list: im = cv2.cvtColor(cv2.imread(pic_path), cv2.COLOR_BGR2RGB) result = self.dish_classify.classification( images=np.expand_dims(im, axis=0), use_gpu=False) print(result) def test_save_inference_model(self): with fluid.program_guard(self.test_prog): self.dish_classify.save_inference_model( dirname='resnet50_vd_dishes', model_filename='model', combined=True) if __name__ == "__main__": suite = unittest.TestSuite() suite.addTest(TestResNet50vdDish('test_context')) suite.addTest(TestResNet50vdDish('test_single_pic')) suite.addTest(TestResNet50vdDish('test_batch')) suite.addTest(TestResNet50vdDish('test_ndarray')) suite.addTest(TestResNet50vdDish('test_save_inference_model')) runner = unittest.TextTestRunner(verbosity=2) runner.run(suite)