# coding=utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import unittest import cv2 import paddle.fluid as fluid import paddlehub as hub pic_dir = '../image_dataset/face_detection/' class TestPyramidBoxLiteMobile(unittest.TestCase): @classmethod def setUpClass(self): """Prepare the environment once before execution of all tests.\n""" self.face_detector = hub.Module(name="pyramidbox_lite_mobile") @classmethod def tearDownClass(self): """clean up the environment after the execution of all tests.\n""" self.face_detector = None def setUp(self): "Call setUp() to prepare environment\n" self.test_prog = fluid.Program() def tearDown(self): "Call tearDown to restore environment.\n" self.test_prog = None def test_single_pic(self): with fluid.program_guard(self.test_prog): pics_path_list = [ os.path.join(pic_dir, f) for f in os.listdir(pic_dir) ] for pic_path in pics_path_list: result = self.face_detector.face_detection( paths=[pic_path], use_gpu=True, visualization=True, shrink=0.5, confs_threshold=0.6) print(result) def test_ndarray(self): with fluid.program_guard(self.test_prog): pics_path_list = [ os.path.join(pic_dir, f) for f in os.listdir(pic_dir) ] pics_ndarray = list() im_list = list() for pic_path in pics_path_list: im = cv2.imread(pic_path) im_list.append(im) result = self.face_detector.face_detection( images=im_list, output_dir='ndarray_output', shrink=1, confs_threshold=0.6, use_gpu=True, visualization=True) print(result) def test_save_inference_model(self): with fluid.program_guard(self.test_prog): self.face_detector.save_inference_model( dirname='pyramidbox_lite_mobile', model_filename='model', combined=True) if __name__ == "__main__": suite = unittest.TestSuite() suite.addTest(TestPyramidBoxLiteMobile('test_single_pic')) suite.addTest(TestPyramidBoxLiteMobile('test_ndarray')) suite.addTest(TestPyramidBoxLiteMobile('test_save_inference_model')) runner = unittest.TextTestRunner(verbosity=2) runner.run(suite)