import cv2 import numpy as np import six import os import glob def resize_short(img, target_size, interpolation=None): """resize image Args: img: image data target_size: resize short target size interpolation: interpolation mode Returns: resized image data """ percent = float(target_size) / min(img.shape[0], img.shape[1]) resized_width = int(round(img.shape[1] * percent)) resized_height = int(round(img.shape[0] * percent)) if interpolation: resized = cv2.resize( img, (resized_width, resized_height), interpolation=interpolation) else: resized = cv2.resize(img, (resized_width, resized_height)) return resized def crop_image(img, target_size, center): """crop image Args: img: images data target_size: crop target size center: crop mode Returns: img: cropped image data """ height, width = img.shape[:2] size = target_size if center == True: w_start = (width - size) // 2 h_start = (height - size) // 2 else: w_start = np.random.randint(0, width - size + 1) h_start = np.random.randint(0, height - size + 1) w_end = w_start + size h_end = h_start + size img = img[h_start:h_end, w_start:w_end, :] return img def preprocess_image(img, random_mirror=True): """ centered, scaled by 1/255. :param img: np.array: shape: [ns, h, w, 3], color order: rgb. :return: np.array: shape: [ns, h, w, 3] """ mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] # transpose to [ns, 3, h, w] img = img.astype('float32').transpose((0, 3, 1, 2)) / 255 img_mean = np.array(mean).reshape((3, 1, 1)) img_std = np.array(std).reshape((3, 1, 1)) img -= img_mean img /= img_std if random_mirror: mirror = int(np.random.uniform(0, 2)) if mirror == 1: img = img[:, :, ::-1, :] return img def _find_classes(dir): # Faster and available in Python 3.5 and above classes = [d.name for d in os.scandir(dir) if d.is_dir()] classes.sort() class_to_idx = {classes[i]: i for i in range(len(classes))} return classes, class_to_idx class ReaderConfig(): """ A generic data loader where the images are arranged in this way: root/train/dog/xxy.jpg root/train/dog/xxz.jpg ... root/train/cat/nsdf3.jpg root/train/cat/asd932_.jpg ... root/test/dog/xxx.jpg ... root/test/cat/123.jpg ... """ def __init__(self, dataset_dir, is_test): image_paths, labels, self.num_classes = self.reader_creator( dataset_dir, is_test) random_per = np.random.permutation(range(len(image_paths))) self.image_paths = image_paths[random_per] self.labels = labels[random_per] self.is_test = is_test def get_reader(self): def reader(): IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') target_size = 256 crop_size = 224 for i, img_path in enumerate(self.image_paths): if not img_path.lower().endswith(IMG_EXTENSIONS): continue img = cv2.imread(img_path) if img is None: print(img_path) continue img = resize_short(img, target_size, interpolation=None) img = crop_image(img, crop_size, center=self.is_test) img = img[:, :, ::-1] img = np.expand_dims(img, axis=0) img = preprocess_image(img, not self.is_test) yield img, self.labels[i] return reader def reader_creator(self, dataset_dir, is_test=False): IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') # read if is_test: datasubset_dir = os.path.join(dataset_dir, 'test') else: datasubset_dir = os.path.join(dataset_dir, 'train') class_names, class_to_idx = _find_classes(datasubset_dir) # num_classes = len(class_names) image_paths = [] labels = [] for class_name in class_names: classes_dir = os.path.join(datasubset_dir, class_name) for img_path in glob.glob(os.path.join(classes_dir, '*')): if not img_path.lower().endswith(IMG_EXTENSIONS): continue image_paths.append(img_path) labels.append(class_to_idx[class_name]) image_paths = np.array(image_paths) labels = np.array(labels) return image_paths, labels, len(class_names)