from __future__ import absolute_import from __future__ import division import os import cv2 import argparse import base64 import paddlex as pdx import numpy as np import paddlehub as hub from paddlehub.module.module import moduleinfo, runnable, serving def base64_to_cv2(b64str): data = base64.b64decode(b64str.encode('utf8')) data = np.fromstring(data, np.uint8) data = cv2.imdecode(data, cv2.IMREAD_COLOR) return data def cv2_to_base64(image): return base64.b64encode(image) # data = cv2.imencode('.jpg', image)[1] # return base64.b64encode(data.tostring()).decode('utf8') def read_images(paths): images = [] for path in paths: images.append(cv2.imread(path)) return images @moduleinfo( name=${NAME}, type=${TYPE}, author=${AUTHOR}, author_email=${EMAIL}, summary=${SUMMARY}, version=${VERSION}) class MODULE(hub.Module): def _initialize(self, **kwargs): self.default_pretrained_model_path = os.path.join( self.directory, 'assets') self.model = pdx.deploy.Predictor(self.default_pretrained_model_path, **kwargs) def predict(self, images=None, paths=None, data=None, batch_size=1, use_gpu=False, **kwargs): all_data = images if images is not None else read_images(paths) total_num = len(all_data) loop_num = int(np.ceil(total_num / batch_size)) res = [] for iter_id in range(loop_num): batch_data = list() handle_id = iter_id * batch_size for image_id in range(batch_size): try: batch_data.append(all_data[handle_id + image_id]) except IndexError: break out = self.model.batch_predict(batch_data, **kwargs) res.extend(out) return res @serving def serving_method(self, images, **kwargs): """ Run as a service. """ images_decode = [base64_to_cv2(image) for image in images] results = self.predict(images_decode, **kwargs) res = [] for result in results: if isinstance(result, dict): # result_new = dict() for key, value in result.items(): if isinstance(value, np.ndarray): result[key] = cv2_to_base64(value) elif isinstance(value, np.generic): result[key] = np.asscalar(value) elif isinstance(result, list): for index in range(len(result)): for key, value in result[index].items(): if isinstance(value, np.ndarray): result[index][key] = cv2_to_base64(value) elif isinstance(value, np.generic): result[index][key] = np.asscalar(value) else: raise RuntimeError('The result cannot be used in serving.') res.append(result) return res @runnable def run_cmd(self, argvs): """ Run as a command. """ self.parser = argparse.ArgumentParser( description="Run the {} module.".format(self.name), prog='hub run {}'.format(self.name), usage='%(prog)s', add_help=True) self.arg_input_group = self.parser.add_argument_group( title="Input options", description="Input data. Required") self.arg_config_group = self.parser.add_argument_group( title="Config options", description= "Run configuration for controlling module behavior, not required.") self.add_module_config_arg() self.add_module_input_arg() args = self.parser.parse_args(argvs) results = self.predict( paths=[args.input_path], use_gpu=args.use_gpu) return results def add_module_config_arg(self): """ Add the command config options. """ self.arg_config_group.add_argument( '--use_gpu', type=bool, default=False, help="whether use GPU or not") def add_module_input_arg(self): """ Add the command input options. """ self.arg_input_group.add_argument( '--input_path', type=str, help="path to image.") if __name__ == '__main__': module = MODULE(directory='./new_model') images = [cv2.imread('./cat.jpg'), cv2.imread('./cat.jpg'), cv2.imread('./cat.jpg')] res = module.predict(images=images)