# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning on sequence labeling task """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import ast import numpy as np import os import time import paddle import paddle.fluid as fluid import paddlehub as hub from paddlehub.finetune.evaluate import chunk_eval, calculate_f1 # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--checkpoint_dir", type=str, default=None, help="Directory to model checkpoint") parser.add_argument("--max_seq_len", type=int, default=512, help="Number of words of the longest seqence.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for finetuning, input should be True or False") args = parser.parse_args() # yapf: enable. if __name__ == '__main__': # loading Paddlehub ERNIE pretrained model module = hub.Module(name="ernie") input_dict, output_dict, program = module.context( max_seq_len=args.max_seq_len) # Sentence labeling dataset reader dataset = hub.dataset.MSRA_NER() reader = hub.reader.SequenceLabelReader( dataset=dataset, vocab_path=module.get_vocab_path(), max_seq_len=args.max_seq_len) inv_label_map = {val: key for key, val in reader.label_map.items()} place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) with fluid.program_guard(program): # Use "sequence_outputs" for token-level output. sequence_output = output_dict["sequence_output"] # Define a classfication finetune task by PaddleHub's API seq_label_task = hub.create_seq_label_task( feature=sequence_output, num_classes=dataset.num_labels, max_seq_len=args.max_seq_len) # Setup feed list for data feeder # Must feed all the tensor of ERNIE's module need # Compared to classification task, we need add seq_len tensor to feedlist feed_list = [ input_dict["input_ids"].name, input_dict["position_ids"].name, input_dict["segment_ids"].name, input_dict["input_mask"].name, seq_label_task.variable('label').name, seq_label_task.variable('seq_len').name ] fetch_list = [ seq_label_task.variable("labels").name, seq_label_task.variable("infers").name, seq_label_task.variable("seq_len").name ] # classification probability tensor probs = seq_label_task.variable("probs") # load best model checkpoint fluid.io.load_persistables(exe, args.checkpoint_dir) inference_program = program.clone(for_test=True) # calculate the num of label from probs variable shape num_labels = seq_label_task.variable("probs").shape[1] data_feeder = fluid.DataFeeder(feed_list=feed_list, place=place) test_reader = reader.data_generator(phase='test', shuffle=False) test_examples = dataset.get_test_examples() total_label, total_infer, total_correct = 0.0, 0.0, 0.0 for index, batch in enumerate(test_reader()): np_labels, np_infers, np_lens = exe.run( feed=data_feeder.feed(batch), fetch_list=fetch_list, program=inference_program) label_num, infer_num, correct_num = chunk_eval( np_labels, np_infers, np_lens, num_labels) total_infer += infer_num total_label += label_num total_correct += correct_num labels = np_labels.reshape([-1]).astype(np.int32).tolist() label_str = "" for i in range(1, np_lens-1): label_str += inv_label_map[labels[i]] print("%s\tpredict=%s" % (test_examples[index], label_str)) precision, recall, f1 = calculate_f1(total_label, total_infer, total_correct) print("F1-Score=%f, precision=%f, recall=%f " % (f1, precision, recall))