import argparse import os import paddle.fluid as fluid import paddlehub as hub import numpy as np # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--target", type=str, default="finetune", help="Number of epoches for fine-tuning.") parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.") parser.add_argument("--use_gpu", type=bool, default=False, help="Whether use GPU for finetuning or predict") parser.add_argument("--checkpoint_dir", type=str, default="paddlehub_finetune_ckpt", help="Path to training data.") parser.add_argument("--batch_size", type=int, default=16, help="Total examples' number in batch for training.") parser.add_argument("--module", type=str, default="resnet50", help="Total examples' number in batch for training.") # yapf: enable. module_map = { "resnet50": "resnet_v2_50_imagenet", "resnet101": "resnet_v2_101_imagenet", "resnet152": "resnet_v2_152_imagenet", "mobilenet": "mobilenet_v2_imagenet", "nasnet": "nasnet_imagenet", "pnasnet": "pnasnet_imagenet" } def get_reader(module, dataset=None): return hub.reader.ImageClassificationReader( image_width=module.get_expected_image_width(), image_height=module.get_expected_image_height(), images_mean=module.get_pretrained_images_mean(), images_std=module.get_pretrained_images_std(), dataset=dataset) def get_task(module, num_classes): input_dict, output_dict, program = module.context(trainable=True) with fluid.program_guard(program): img = input_dict["image"] feature_map = output_dict["feature_map"] task = hub.create_img_cls_task( feature=feature_map, num_classes=num_classes) return task def finetune(args): module = hub.Module(name=args.module) input_dict, output_dict, program = module.context(trainable=True) dataset = hub.dataset.Flowers() data_reader = get_reader(module, dataset) task = get_task(module, dataset.num_labels) img = input_dict["image"] feed_list = [img.name, task.variable('label').name] config = hub.RunConfig( use_cuda=args.use_gpu, num_epoch=args.num_epoch, batch_size=args.batch_size, enable_memory_optim=False, checkpoint_dir=args.checkpoint_dir, strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) hub.finetune_and_eval( task, feed_list=feed_list, data_reader=data_reader, config=config) def predict(args): module = hub.Module(name=args.module) input_dict, output_dict, program = module.context(trainable=True) data_reader = get_reader(module) task = get_task(module, 5) img = input_dict["image"] feed_list = [img.name] label_map = { 0: "roses", 1: "tulips", 2: "daisy", 3: "sunflowers", 4: "dandelion" } with fluid.program_guard(task.inference_program()): place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) pretrained_model_dir = os.path.join(args.checkpoint_dir, "best_model") if not os.path.exists(pretrained_model_dir): hub.logger.error( "pretrained model dir %s didn't exist" % pretrained_model_dir) exit(1) fluid.io.load_persistables(exe, pretrained_model_dir) feeder = fluid.DataFeeder(feed_list=feed_list, place=place) data = ["test/test_img_roses.jpg", "test/test_img_daisy.jpg"] predict_reader = data_reader.data_generator( phase="predict", batch_size=1, data=data) for index, batch in enumerate(predict_reader()): result, = exe.run( feed=feeder.feed(batch), fetch_list=[task.variable('probs')]) predict_result = label_map[np.argsort(result[0])[::-1][0]] print("input %i is %s, and the predict result is %s" % (index, data[index], predict_result)) def main(args): if args.target == "finetune": finetune(args) elif args.target == "predict": predict(args) else: hub.logger.error("target should in %s" % ["finetune", "predict"]) exit(1) if __name__ == "__main__": args = parser.parse_args() if not args.module in module_map: hub.logger.error("module should in %s" % module_map.keys()) exit(1) args.module = module_map[args.module] main(args)