# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddlehub as hub from paddlehub.datasets import ChnSentiCorp import ast import argparse parser = argparse.ArgumentParser(__doc__) parser.add_argument("--num_epoch", type=int, default=3, help="Number of epoches for fine-tuning.") parser.add_argument("--use_gpu", type=ast.literal_eval, default=True, help="Whether use GPU for fine-tuning, input should be True or False") parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.") parser.add_argument("--max_seq_len", type=int, default=128, help="Number of words of the longest seqence.") parser.add_argument("--batch_size", type=int, default=32, help="Total examples' number in batch for training.") parser.add_argument("--checkpoint_dir", type=str, default='./checkpoint', help="Directory to model checkpoint") parser.add_argument("--save_interval", type=int, default=1, help="Save checkpoint every n epoch.") args = parser.parse_args() if __name__ == '__main__': model = hub.Module(name='ernie_tiny', version='2.0.1', task='seq-cls') train_dataset = ChnSentiCorp( tokenizer=model.get_tokenizer(), max_seq_len=args.max_seq_len, mode='train') dev_dataset = ChnSentiCorp( tokenizer=model.get_tokenizer(), max_seq_len=args.max_seq_len, mode='dev') test_dataset = ChnSentiCorp( tokenizer=model.get_tokenizer(), max_seq_len=args.max_seq_len, mode='test') optimizer = paddle.optimizer.AdamW( learning_rate=args.learning_rate, parameters=model.parameters()) trainer = hub.Trainer(model, optimizer, checkpoint_dir=args.checkpoint_dir, use_gpu=args.use_gpu) trainer.train( train_dataset, epochs=args.num_epoch, batch_size=args.batch_size, eval_dataset=dev_dataset, save_interval=args.save_interval, ) trainer.evaluate(test_dataset, batch_size=args.batch_size)