#coding:utf-8 import argparse import os import ast import paddle.fluid as fluid import paddlehub as hub import numpy as np from paddlehub.reader.cv_reader import ObjectDetectionReader from paddlehub.dataset.base_cv_dataset import ObjectDetectionDataset from paddlehub.contrib.ppdet.utils.coco_eval import bbox2out from paddlehub.common.detection_config import get_model_type, get_feed_list, get_mid_feature from paddlehub.common import detection_config as dconf # yapf: disable parser = argparse.ArgumentParser(__doc__) parser.add_argument("--use_gpu", type=ast.literal_eval, default=False, help="Whether use GPU for predict.") parser.add_argument("--checkpoint_dir", type=str, default="paddlehub_finetune_ckpt", help="Path to save log data.") parser.add_argument("--batch_size", type=int, default=2, help="Total examples' number in batch for training.") parser.add_argument("--module", type=str, default="ssd", help="Module used as a feature extractor.") parser.add_argument("--dataset", type=str, default="coco10", help="Dataset to finetune.") # yapf: enable. module_map = { "yolov3": "yolov3_darknet53_coco2017", "ssd": "ssd_vgg16_512_coco2017", "faster_rcnn": "faster_rcnn_resnet50_coco2017", } def predict(args): module_name = args.module # 'yolov3_darknet53_coco2017' model_type = get_model_type(module_name) # 'yolo' # define data ds = hub.dataset.Coco10(model_type) print("ds.num_labels", ds.num_labels) data_reader = ObjectDetectionReader(dataset=ds, model_type=model_type) # define model(program) module = hub.Module(name=module_name) if model_type == 'rcnn': input_dict, output_dict, program = module.context( trainable=True, phase='train') input_dict_pred, output_dict_pred, program_pred = module.context( trainable=False) else: input_dict, output_dict, program = module.context(trainable=True) input_dict_pred = output_dict_pred = None feed_list, pred_feed_list = get_feed_list(module_name, input_dict, input_dict_pred) feature, pred_feature = get_mid_feature(module_name, output_dict, output_dict_pred) config = hub.RunConfig( use_data_parallel=False, use_pyreader=True, use_cuda=args.use_gpu, batch_size=args.batch_size, enable_memory_optim=False, checkpoint_dir=args.checkpoint_dir, strategy=hub.finetune.strategy.DefaultFinetuneStrategy()) task = hub.DetectionTask( data_reader=data_reader, num_classes=ds.num_labels, feed_list=feed_list, feature=feature, predict_feed_list=pred_feed_list, predict_feature=pred_feature, model_type=model_type, config=config) data = [ "./test/test_img_bird.jpg", "./test/test_img_cat.jpg", ] label_map = ds.label_dict() run_states = task.predict(data=data, accelerate_mode=False) results = [run_state.run_results for run_state in run_states] for outs in results: keys = ['im_shape', 'im_id', 'bbox'] res = { k: (np.array(v), v.recursive_sequence_lengths()) for k, v in zip(keys, outs) } print("im_id", res['im_id']) is_bbox_normalized = dconf.conf[model_type]['is_bbox_normalized'] clsid2catid = {} for k in label_map: clsid2catid[k] = k bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized) print(bbox_results) if __name__ == "__main__": args = parser.parse_args() if not args.module in module_map: hub.logger.error("module should in %s" % module_map.keys()) exit(1) args.module = module_map[args.module] predict(args)