# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle import paddle.nn as nn import paddle.nn.functional as F def SyncBatchNorm(*args, **kwargs): """In cpu environment nn.SyncBatchNorm does not have kernel so use nn.BatchNorm2D instead""" if paddle.get_device() == 'cpu' or os.environ.get('PADDLESEG_EXPORT_STAGE'): return nn.BatchNorm2D(*args, **kwargs) else: return nn.SyncBatchNorm(*args, **kwargs) class ConvBNReLU(nn.Layer): """Basic conv bn relu layer.""" def __init__(self, in_channels: int, out_channels: int, kernel_size: int, padding: str = 'same', **kwargs): super().__init__() self._conv = nn.Conv2D(in_channels, out_channels, kernel_size, padding=padding, **kwargs) self._batch_norm = SyncBatchNorm(out_channels) def forward(self, x: paddle.Tensor) -> paddle.Tensor: x = self._conv(x) x = self._batch_norm(x) x = F.relu(x) return x class ConvBN(nn.Layer): """Basic conv bn layer.""" def __init__(self, in_channels: int, out_channels: int, kernel_size: int, padding: str = 'same', **kwargs): super().__init__() self._conv = nn.Conv2D(in_channels, out_channels, kernel_size, padding=padding, **kwargs) self._batch_norm = SyncBatchNorm(out_channels) def forward(self, x: paddle.Tensor) -> paddle.Tensor: x = self._conv(x) x = self._batch_norm(x) return x class ConvReLUPool(nn.Layer): """Basic conv bn pool layer.""" def __init__(self, in_channels: int, out_channels: int): super().__init__() self.conv = nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1) def forward(self, x: paddle.Tensor) -> paddle.Tensor: x = self.conv(x) x = F.relu(x) x = F.pool2d(x, pool_size=2, pool_type="max", pool_stride=2) return x class SeparableConvBNReLU(nn.Layer): """Basic separable conv bn relu layer.""" def __init__(self, in_channels: int, out_channels: int, kernel_size: int, padding: str = 'same', **kwargs): super().__init__() self.depthwise_conv = ConvBN( in_channels, out_channels=in_channels, kernel_size=kernel_size, padding=padding, groups=in_channels, **kwargs) self.piontwise_conv = ConvBNReLU(in_channels, out_channels, kernel_size=1, groups=1) def forward(self, x: paddle.Tensor) -> paddle.Tensor: x = self.depthwise_conv(x) x = self.piontwise_conv(x) return x class DepthwiseConvBN(nn.Layer): """Basic depthwise conv bn relu layer.""" def __init__(self, in_channels: int, out_channels: int, kernel_size: int, padding: str = 'same', **kwargs): super().__init__() self.depthwise_conv = ConvBN( in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, groups=in_channels, **kwargs) def forward(self, x: paddle.Tensor) -> paddle.Tensor: x = self.depthwise_conv(x) return x class AuxLayer(nn.Layer): """ The auxiliary layer implementation for auxiliary loss. Args: in_channels (int): The number of input channels. inter_channels (int): The intermediate channels. out_channels (int): The number of output channels, and usually it is num_classes. dropout_prob (float, optional): The drop rate. Default: 0.1. """ def __init__(self, in_channels: int, inter_channels: int, out_channels: int, dropout_prob: float = 0.1): super().__init__() self.conv_bn_relu = ConvBNReLU(in_channels=in_channels, out_channels=inter_channels, kernel_size=3, padding=1) self.dropout = nn.Dropout(p=dropout_prob) self.conv = nn.Conv2D(in_channels=inter_channels, out_channels=out_channels, kernel_size=1) def forward(self, x: paddle.Tensor) -> paddle.Tensor: x = self.conv_bn_relu(x) x = self.dropout(x) x = self.conv(x) return x class Activation(nn.Layer): """ The wrapper of activations. Args: act (str, optional): The activation name in lowercase. It must be one of ['elu', 'gelu', 'hardshrink', 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid', 'softmax', 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax', 'hsigmoid']. Default: None, means identical transformation. Returns: A callable object of Activation. Raises: KeyError: When parameter `act` is not in the optional range. Examples: from paddleseg.models.common.activation import Activation relu = Activation("relu") print(relu) # sigmoid = Activation("sigmoid") print(sigmoid) # not_exit_one = Activation("not_exit_one") # KeyError: "not_exit_one does not exist in the current dict_keys(['elu', 'gelu', 'hardshrink', # 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid', 'softmax', # 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax', 'hsigmoid'])" """ def __init__(self, act: str = None): super(Activation, self).__init__() self._act = act upper_act_names = nn.layer.activation.__dict__.keys() lower_act_names = [act.lower() for act in upper_act_names] act_dict = dict(zip(lower_act_names, upper_act_names)) if act is not None: if act in act_dict.keys(): act_name = act_dict[act] self.act_func = eval("nn.layer.activation.{}()".format(act_name)) else: raise KeyError("{} does not exist in the current {}".format(act, act_dict.keys())) def forward(self, x: paddle.Tensor) -> paddle.Tensor: if self._act is not None: return self.act_func(x) else: return x