# coding: utf-8 # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from flask import Flask, request, render_template from paddlehub.serving.model_service.model_manage import default_module_manager from paddlehub.common import utils import time import os import base64 import logging import glob cv_module_method = { "vgg19_imagenet": "predict_classification", "vgg16_imagenet": "predict_classification", "vgg13_imagenet": "predict_classification", "vgg11_imagenet": "predict_classification", "shufflenet_v2_imagenet": "predict_classification", "se_resnext50_32x4d_imagenet": "predict_classification", "se_resnext101_32x4d_imagenet": "predict_classification", "resnet_v2_50_imagenet": "predict_classification", "resnet_v2_34_imagenet": "predict_classification", "resnet_v2_18_imagenet": "predict_classification", "resnet_v2_152_imagenet": "predict_classification", "resnet_v2_101_imagenet": "predict_classification", "pnasnet_imagenet": "predict_classification", "nasnet_imagenet": "predict_classification", "mobilenet_v2_imagenet": "predict_classification", "googlenet_imagenet": "predict_classification", "alexnet_imagenet": "predict_classification", "yolov3_coco2017": "predict_object_detection", "ultra_light_fast_generic_face_detector_1mb_640": "predict_object_detection", "ultra_light_fast_generic_face_detector_1mb_320": "predict_object_detection", "ssd_mobilenet_v1_pascal": "predict_object_detection", "pyramidbox_face_detection": "predict_object_detection", "faster_rcnn_coco2017": "predict_object_detection", "cyclegan_cityscapes": "predict_gan", "deeplabv3p_xception65_humanseg": "predict_semantic_segmentation", "ace2p": "predict_semantic_segmentation", "pyramidbox_lite_server_mask": "predict_mask", "pyramidbox_lite_mobile_mask": "predict_mask" } def predict_nlp(module, input_text, req_id, batch_size, extra=None): method_name = module.desc.attr.map.data['default_signature'].s predict_method = getattr(module, method_name) try: data = input_text if module.name == "lac" and extra.get("user_dict", []) != []: res = predict_method( data=data, user_dict=extra.get("user_dict", [])[0], use_gpu=use_gpu, batch_size=batch_size) else: res = predict_method( data=data, use_gpu=use_gpu, batch_size=batch_size) except Exception as err: curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) print(curr, " - ", err) return {"results": "Please check data format!"} finally: user_dict = extra.get("user_dict", []) for item in user_dict: if os.path.exists(item): os.remove(item) return {"results": res} def predict_classification(module, input_img, id, batch_size, extra={}): global use_gpu method_name = module.desc.attr.map.data['default_signature'].s predict_method = getattr(module, method_name) try: input_img = {"image": input_img} results = predict_method( data=input_img, use_gpu=use_gpu, batch_size=batch_size) except Exception as err: curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) print(curr, " - ", err) return {"result": "Please check data format!"} finally: for item in input_img["image"]: if os.path.exists(item): os.remove(item) return results def predict_gan(module, input_img, id, batch_size, extra={}): output_folder = module.name.split("_")[0] + "_" + "output" global use_gpu method_name = module.desc.attr.map.data['default_signature'].s predict_method = getattr(module, method_name) try: extra.update({"image": input_img}) input_img = {"image": input_img} results = predict_method( data=extra, use_gpu=use_gpu, batch_size=batch_size) except Exception as err: curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) print(curr, " - ", err) return {"result": "Please check data format!"} finally: base64_list = [] results_pack = [] input_img = input_img.get("image", []) for index in range(len(input_img)): item = input_img[index] output_file = results[index].split(" ")[-1] with open(output_file, "rb") as fp: b_head = "data:image/" + item.split(".")[-1] + ";base64" b_body = base64.b64encode(fp.read()) b_body = str(b_body).replace("b'", "").replace("'", "") b_img = b_head + "," + b_body base64_list.append(b_img) results[index] = results[index].replace(id + "_", "") results[index] = {"path": results[index]} results[index].update({"base64": b_img}) results_pack.append(results[index]) os.remove(item) os.remove(output_file) return results_pack def predict_mask(module, input_img, id, batch_size, extra=None, r_img=True): output_folder = "detection_result" global use_gpu method_name = module.desc.attr.map.data['default_signature'].s predict_method = getattr(module, method_name) data_len = len(input_img) if input_img is not None else 0 results = [] try: data = {} if input_img is not None: input_img = {"image": input_img} data.update(input_img) if extra is not None: data.update(extra) r_img = False if "visual_result" in extra.keys() else True results = predict_method( data=data, visualization=r_img, use_gpu=use_gpu, batch_size=batch_size) results = utils.handle_mask_results(results, data_len) except Exception as err: curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) print(curr, " - ", err) return {"result": "Please check data format!"} finally: base64_list = [] results_pack = [] if input_img is not None: if r_img is False: for index in range(len(results)): results[index]["path"] = "" results_pack = results str_id = id + "*" files_deleted = glob.glob(str_id) for path in files_deleted: if os.path.exists(path): os.remove(path) else: input_img = input_img.get("image", []) for index in range(len(input_img)): item = input_img[index] file_path = os.path.join(output_folder, item) if not os.path.exists(file_path): results_pack.append(results[index]) os.remove(item) else: with open(file_path, "rb") as fp: b_head = "data:image/" + item.split( ".")[-1] + ";base64" b_body = base64.b64encode(fp.read()) b_body = str(b_body).replace("b'", "").replace( "'", "") b_img = b_head + "," + b_body base64_list.append(b_img) results[index]["path"] = results[index]["path"].replace( id + "_", "") if results[index]["path"] != "" \ else "" results[index].update({"base64": b_img}) results_pack.append(results[index]) os.remove(item) os.remove(os.path.join(output_folder, item)) else: results_pack = results return results_pack def predict_object_detection(module, input_img, id, batch_size, extra={}): output_folder = "detection_result" global use_gpu method_name = module.desc.attr.map.data['default_signature'].s predict_method = getattr(module, method_name) try: input_img = {"image": input_img} results = predict_method( data=input_img, use_gpu=use_gpu, batch_size=batch_size) except Exception as err: curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) print(curr, " - ", err) return {"result": "Please check data format!"} finally: base64_list = [] results_pack = [] input_img = input_img.get("image", []) for index in range(len(input_img)): item = input_img[index] with open(os.path.join(output_folder, item), "rb") as fp: b_head = "data:image/" + item.split(".")[-1] + ";base64" b_body = base64.b64encode(fp.read()) b_body = str(b_body).replace("b'", "").replace("'", "") b_img = b_head + "," + b_body base64_list.append(b_img) results[index]["path"] = results[index]["path"].replace( id + "_", "") results[index].update({"base64": b_img}) results_pack.append(results[index]) os.remove(item) os.remove(os.path.join(output_folder, item)) return results_pack def predict_semantic_segmentation(module, input_img, id, batch_size, extra={}): output_folder = module.name.split("_")[-1] + "_" + "output" global use_gpu method_name = module.desc.attr.map.data['default_signature'].s predict_method = getattr(module, method_name) try: input_img = {"image": input_img} results = predict_method( data=input_img, use_gpu=use_gpu, batch_size=batch_size) except Exception as err: curr = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) print(curr, " - ", err) return {"result": "Please check data format!"} finally: base64_list = [] results_pack = [] input_img = input_img.get("image", []) for index in range(len(input_img)): # special item = input_img[index] output_file_path = "" with open(results[index]["processed"], "rb") as fp: b_head = "data:image/png;base64" b_body = base64.b64encode(fp.read()) b_body = str(b_body).replace("b'", "").replace("'", "") b_img = b_head + "," + b_body base64_list.append(b_img) output_file_path = results[index]["processed"] results[index]["origin"] = results[index]["origin"].replace( id + "_", "") results[index]["processed"] = results[index][ "processed"].replace(id + "_", "") results[index].update({"base64": b_img}) results_pack.append(results[index]) os.remove(item) if output_file_path != "": os.remove(output_file_path) return results_pack def create_app(init_flag=False, configs=None): if init_flag is False: if configs is None: raise RuntimeError("Lack of necessary configs.") global use_gpu, time_out time_out = 60 use_gpu = configs.get("use_gpu", False) config_with_file(configs.get("modules_info", [])) app_instance = Flask(__name__) app_instance.config["JSON_AS_ASCII"] = False gunicorn_logger = logging.getLogger('gunicorn.error') app_instance.logger.handlers = gunicorn_logger.handlers app_instance.logger.setLevel(gunicorn_logger.level) @app_instance.route("/", methods=["GET", "POST"]) def index(): return render_template("main.html") @app_instance.before_request def before_request(): request.data = {"id": utils.md5(request.remote_addr + str(time.time()))} @app_instance.route("/get/modules", methods=["GET", "POST"]) def get_modules_info(): global nlp_module, cv_module module_info = {} if len(nlp_module) > 0: module_info.update({"nlp_module": [{"Choose...": "Choose..."}]}) for item in nlp_module: module_info["nlp_module"].append({item: item}) if len(cv_module) > 0: module_info.update({"cv_module": [{"Choose...": "Choose..."}]}) for item in cv_module: module_info["cv_module"].append({item: item}) return {"module_info": module_info} @app_instance.route("/predict/image/", methods=["POST"]) def predict_image(module_name): if request.path.split("/")[-1] not in cv_module: return {"error": "Module {} is not available.".format(module_name)} req_id = request.data.get("id") global use_gpu, batch_size_dict img_base64 = request.form.getlist("image") extra_info = {} for item in list(request.form.keys()): extra_info.update({item: request.form.getlist(item)}) for key in extra_info.keys(): if isinstance(extra_info[key], list): extra_info[key] = utils.base64s_to_cvmats( eval(extra_info[key][0])["b64s"]) if isinstance( extra_info[key][0], str ) and "b64s" in extra_info[key][0] else extra_info[key] file_name_list = [] if img_base64 != []: for item in img_base64: ext = item.split(";")[0].split("/")[-1] if ext not in ["jpeg", "jpg", "png"]: return {"result": "Unrecognized file type"} filename = req_id + "_" \ + utils.md5(str(time.time()) + item[0:20]) \ + "." \ + ext img_data = base64.b64decode(item.split(',')[-1]) file_name_list.append(filename) with open(filename, "wb") as fp: fp.write(img_data) else: file = request.files.getlist("image") for item in file: file_name = req_id + "_" + item.filename item.save(file_name) file_name_list.append(file_name) module = default_module_manager.get_module(module_name) predict_func_name = cv_module_method.get(module_name, "") if predict_func_name != "": predict_func = eval(predict_func_name) else: module_type = module.type.split("/")[-1].replace("-", "_").lower() predict_func = eval("predict_" + module_type) batch_size = batch_size_dict.get(module_name, 1) if file_name_list == []: file_name_list = None if extra_info == {}: extra_info = None results = predict_func(module, file_name_list, req_id, batch_size, extra_info) r = {"results": str(results)} return r @app_instance.route("/predict/text/", methods=["POST"]) def predict_text(module_name): if request.path.split("/")[-1] not in nlp_module: return {"error": "Module {} is not available.".format(module_name)} req_id = request.data.get("id") inputs = {} for item in list(request.form.keys()): inputs.update({item: request.form.getlist(item)}) files = {} for file_key in list(request.files.keys()): files[file_key] = [] for file in request.files.getlist(file_key): file_name = req_id + "_" + file.filename files[file_key].append(file_name) file.save(file_name) module = default_module_manager.get_module(module_name) results = predict_nlp( module=module, input_text=inputs, req_id=req_id, batch_size=batch_size_dict.get(module_name, 1), extra=files) return results return app_instance def config_with_file(configs): global nlp_module, cv_module, batch_size_dict nlp_module = [] cv_module = [] batch_size_dict = {} for item in configs: print(item) if item["category"] == "CV": cv_module.append(item["module"]) elif item["category"] == "NLP": nlp_module.append(item["module"]) batch_size_dict.update({item["module"]: item["batch_size"]}) default_module_manager.load_module([item["module"]]) def run(is_use_gpu=False, configs=None, port=8866, timeout=60): global use_gpu, time_out time_out = timeout use_gpu = is_use_gpu if configs is not None: config_with_file(configs) else: print("Start failed cause of missing configuration.") return my_app = create_app(init_flag=True) my_app.run(host="0.0.0.0", port=port, debug=False, threaded=False) print("PaddleHub-Serving has been stopped.") if __name__ == "__main__": configs = [{ 'category': 'NLP', u'queue_size': 20, u'version': u'1.0.0', u'module': 'lac', u'batch_size': 20 }, { 'category': 'NLP', u'queue_size': 20, u'version': u'1.0.0', u'module': 'senta_lstm', u'batch_size': 20 }, { 'category': 'CV', u'queue_size': 20, u'version': u'1.0.0', u'module': 'yolov3_coco2017', u'batch_size': 20 }, { 'category': 'CV', u'queue_size': 20, u'version': u'1.0.0', u'module': 'faster_rcnn_coco2017', u'batch_size': 20 }] run(is_use_gpu=False, configs=configs)